• Title/Summary/Keyword: hybridization technique

Search Result 147, Processing Time 0.031 seconds

Optimal Fuzzy Sliding-Mode Control for Microcontroller-based Microfluidic Manipulation in Biochip System

  • Chung, Yung-Chiang;Wen, Bor-Jiunn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.196-201
    • /
    • 2004
  • In biometric and biomedical applications, a special transporting mechanism must be designed for the ${\mu}$TAS (micro total analysis system) to move samples and reagents through the microchannels that connect the unit procedure components in the system. An important issue for this miniaturization and integration is microfluid management technique, i.e., microfluid transportation, metering, and mixing. In view of this, this study presents an optimal fuzzy sliding-mode control (OFSMC) design based on the 8051 microprocessor and implementation of a complete microfluidic manipulated system implementation of biochip system with a pneumatic pumping actuator, a feedback-signal photodiodes and flowmeter. The new microfluid management technique successfully improved the efficiency of molecular biology reaction by increasing the velocity of the target nucleic acid molecules, which increases the effective collision into the probe molecules as the target molecules flow back and forth. Therefore, this hybridization chip was able to increase hybridization signal 6-fold and reduce non-specific target-probe binding and background noises within 30 minutes, as compared to conventional hybridization methods, which may take from 4 hours to overnight. In addition, the new technique was also used in DNA extraction. When serum existed in the fluid, the extraction efficiency of immobilized beads with solution flowing back and forth was 88-fold higher than that of free-beads.

  • PDF

Applications of Geostatistics to the Quantitative Analysis of Genetic Instability in Carcinogenesis

  • Kim Hyoung-Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.1
    • /
    • pp.167-175
    • /
    • 2006
  • It has long been recognized that cancer is a genetic disease. To find this measures of genetic instability, stain cells with chromosome specific probes using chromosome in-situ hybridization technique is adopted. Even though in-situ hybridization technique is powerful, truncation of nuclei often results in under-representation of chromosome copies in slides due to the sectioning of tissue blocks. Because of this problem we suggest three different methods to analyze the cervical cancer data set. We observe that genetic instability is an increasing function of histology and our suggested model is the best in detecting genetic instability of tumorigenesis processes.

Sex Determination of In Vitro Fertilized Bovine Embryos by Fluorescence In Situ Hybridization Technique

  • Han, M.S.;Cho, E.J.;Ha, H.B.;Park, H.S.;Sohn, S.H.
    • Reproductive and Developmental Biology
    • /
    • v.28 no.2
    • /
    • pp.133-137
    • /
    • 2004
  • Sexing from bovine embryos which were fertilized in vitro implicate a possibility of the sex-controlled cattle production. This study was carried out to investigate the possibility of determining of embryo sex by fluorescence in situ hybridization (FISH) technique. FISH was achieved in in vitro fertilized bovine embryos using a bovine Y-specific DNA probe which constructed from the btDYZ-1 sequences. To evaluate Y-chromosome specificity of the FISH probe, metaphase spreads of whole embryos and lymphocytes were prepared and tested. A male-specific signal was detected on 100% of Y chromosome bearing metaphase specimens. Using the FISH technique with a bovine Y-specific probe, 232 whole embryos of 8 cell- to blastocyst-stage were analyzed. Observing the presence of the Y-probe signal on blastomeres, 102 embryos were predicted as male, and 130 embryos as female. The determining rate of embryo sex by FISH technique was about 93% regardless of embryonic stages. In conclusion, the FISH using a bovine Y-specific DNA probe is an accurate, reliable and quick method for determining the sex of bovine embryos.

Sex Determination of In Vitro Fertilized Bovine Embryos by Fluorescence in situ Hybridization Technique

  • Han, M. S.;E. J. Cho;H. B. Ha;Park, H. S.;S. H. Sohn
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.287-287
    • /
    • 2004
  • Sexing from bovine embryos which were fertilized in vitro implicate a possibility of production of the sex controlled cattle. This study was carried out to investigate the possibility of determining of embryo sex by fluorescence in situ hybridization (FISH) technique. FISH was achieved in in vitro fertilized bovine embryos using a bovine Y-specific DNA probe which constructed from the btDYZ-1 sequences. (omitted)

  • PDF

The Preparation of Mockeoseuk(China Fossil) Composite by Hybridization Technique and Evaluation of Its Efficacy (복합화기술을 응용한 목어석 복합체의 제조 및 이의 효능에 관한 연구)

  • Kwon, Sun-Sang;Yi, Seung-Hwan;Kim, Duck-Hee;Kim, Jun-Oh;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.3
    • /
    • pp.153-157
    • /
    • 2007
  • Mockeoseuk(China fossil) contains the various kinds of minerals and radiates far infrared light. In order to apply mockeoseuk to the cosmetic formulation, hybridization technique was adapted and modified by selecting a spherical silicone powder as substrate. The resultant composite improved the physical properties such as skin feeling and apparent color and still sustained the efficacy of mockeoseuk. In a clinical test, the cosmetic formulation with 10 wt% mockeoseuk composite raised the temperature of facial skin through enhancement of skin blood flow.

Hybridization에 의한 반수체 재조합 효모균주의 전분 발효능 증진

  • Park, Sun-Young;Kim, Keun;Lee, Chang-Hoo
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.6
    • /
    • pp.726-732
    • /
    • 1996
  • To improve the fermentation characteristics(such as starch-degradability, ethanol tolerance, sugar and high-temperature tolerance) of recombinant haploid yeast Saccharomyces diastaticus K114, hybridization technique was used. The hybridization partner was S. diastaticus 1177 which had good glucoamylase activity and fermentabi- lity. The best hybrid HH64 showed improved ethanol tolerance, sugar and high-temperature tolerance. Especia- lly, the starch-fermentability was significantly improved, since the hybrid produced 1.60% (w/v) ethanol from 4% (w/v) starch, while the recombinant haploid K114 produced 1.30% (w/v) ethanol. The optimum temperature and pH for the starch-fermentation by the hybrid HH64 was 30$\circ$C and 5, respectively. The hybrid yeast HH64 produced 7.5% (w/v) ethanol directly from 20% (w/v) starch.

  • PDF

Development of dot blot hybridization method using non-radio labeled probes for the diagnosis of malignant catarrhal fever (Dot blot hybridization에 의한 malignant catarrhal fever virus의 진단법 개발)

  • Kim, Ok-Jin
    • Korean Journal of Veterinary Pathology
    • /
    • v.7 no.1
    • /
    • pp.1-4
    • /
    • 2003
  • Malignant catarrhal fever (MCF) is a systemic disease of ruminants caused by a gamma herpesvirus, ovine herpesvirus 2 (OvHV-2). Dot blot hybridization (DBH) protocols for detecting and differentiating this MCF virus were developed. OvHV-2 specific primer pairs, 556/555, were used for the amplification of target DNA. Then, the amplified DNA was labeled with incorporation of digoxigenin (DIG). The Dig-labeled probe was able to detect and differentiate specifically OvHV-2 DNA. This DBH technique can be applied to confirm the presence of MCF virus on clinical samples and to differentiate specifically between OvHV-2 infection and other viral infections.

  • PDF

Evaluation of Amplified-based Target Preparation Strategies for Toxicogenomics Study : cDNA versus cRNA

  • Nam, Suk-Woo;Lee, Jung-Young
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.92-98
    • /
    • 2005
  • DNA microarray analysis of gene expression in toxicogenomics typically requires relatively large amounts of total RNA. This limits the use of DNA microarray when the sample available is small. To confront this limitation, different methods of linear RNA amplification that generate antisense RNA (aRNA) have been optimized for microarray use. The target preparation strategy using amplified RNA in DNA microarray protocol can be divided into direct-incorporation labeling which resulted in cDNA targets (Cy-dye labeled cDNA from aRNA) and indirect-labeling which resulted in cRNA targets (i.e. Cy-dye labeled aRNA), respectively. However, despite the common use of amplified targets (cDNA or cRNA) from aRNAs, no systemic assessment for the use of amplified targets and bias in terms of hybridization performance has been reported. In this investigation, we have compared the hybridization performance of cRNA targets with cDNA targets from aRNA on a 10 K cDNA microarrays. Under optimized hybridization conditions, we found that 43% of outliers from cDNA technique and 86% from the outlier genes were reproducibly detected by both targets hybridization onto cDNA microarray. This suggests that the cRNA labeling method may have a reduced capacity for detecting the differential gene expression when compared to the cDNA target preparation. However, further validation of this discordant result should be pursued to determine which techniques possesses better accuracy in identifying truly differential genes.

Age Prediction in the Chickens Using Telomere Quantity by Quantitative Fluorescence In situ Hybridization Technique

  • Kim, Y.J.;Subramani, V.K.;Sohn, S.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.5
    • /
    • pp.603-609
    • /
    • 2011
  • Telomeres are special structures at the ends of eukaryotic chromosomes. Vertebrate telomeres consist of tandem repeats of conserved TTAGGG sequence and associated proteins. Birds are interesting models for molecular studies on aging and cellular senescence because of their slow aging rates and longer life spans for their body size. In this longitudinal study, we explored the possibility of using telomeres as an age-marker to predict age in Single Comb White Leghorn layer chickens. We quantified the relative amount of telomeric DNA in isolated peripheral blood lymphocytes by the Quantitative Fluorescence in situ Hybridization technique on interphase nuclei (IQ FISH) using telomere-specific DNA probes. We found that the amount of telomeric DNA (ATD) reduced significantly with an increase in chronological age of the chicken. Especially, the telomere shortening rates are greatly increased in growing individuals compared to laying and old-aged individuals. Therefore, using the ATD values obtained by IQ FISH we established the possibility of age prediction in chickens based on the telomere theory of aging. By regression analysis of the ATD values at each age interval, we formulated an equation to predict the age of chickens. In conclusion, the telomeric DNA values by IQ FISH analyses can be used as an effective age-marker in predicting the chronological age of chickens. The study has implications in the breeding and population genetics of poultry, especially the reproductive potential.