Browse > Article
http://dx.doi.org/10.5713/ajas.2011.10187

Age Prediction in the Chickens Using Telomere Quantity by Quantitative Fluorescence In situ Hybridization Technique  

Kim, Y.J. (Department of Animal Science and Biotechnology, Jinju National University)
Subramani, V.K. (Department of Animal Science and Biotechnology, Jinju National University)
Sohn, S.H. (Department of Animal Science and Biotechnology, Jinju National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.24, no.5, 2011 , pp. 603-609 More about this Journal
Abstract
Telomeres are special structures at the ends of eukaryotic chromosomes. Vertebrate telomeres consist of tandem repeats of conserved TTAGGG sequence and associated proteins. Birds are interesting models for molecular studies on aging and cellular senescence because of their slow aging rates and longer life spans for their body size. In this longitudinal study, we explored the possibility of using telomeres as an age-marker to predict age in Single Comb White Leghorn layer chickens. We quantified the relative amount of telomeric DNA in isolated peripheral blood lymphocytes by the Quantitative Fluorescence in situ Hybridization technique on interphase nuclei (IQ FISH) using telomere-specific DNA probes. We found that the amount of telomeric DNA (ATD) reduced significantly with an increase in chronological age of the chicken. Especially, the telomere shortening rates are greatly increased in growing individuals compared to laying and old-aged individuals. Therefore, using the ATD values obtained by IQ FISH we established the possibility of age prediction in chickens based on the telomere theory of aging. By regression analysis of the ATD values at each age interval, we formulated an equation to predict the age of chickens. In conclusion, the telomeric DNA values by IQ FISH analyses can be used as an effective age-marker in predicting the chronological age of chickens. The study has implications in the breeding and population genetics of poultry, especially the reproductive potential.
Keywords
Chickens; Telomere; Aging; Age Prediction; Fluorescence In situ Hybridization;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Sohn, S. H., E. J. Cho, W. J. Son and C. Y. Lee. 2007. Diagnosis of bovine freemartinism by fluorescence in situ hybridization on interphase nuclei using a bovine Y chromosome-specific DNA probe. Theriogenology 68:1003-1011.   DOI   ScienceOn
2 Solovei, I., E. R. Gaginskaya and H. C. Macgregor. 1994. The arrangement and transcription of telomere DNA sequences at the ends of lampbrush chromosomes of birds. Chromosome Res. 2:460-470.   DOI
3 Swanberg, S. E. and M. E. Delany. 2005. Differential expression of genes associated with telomere length homeostasis and oncogenesis in an avian model. Mech. Ageing Dev. 126:1060-1070.   DOI   ScienceOn
4 Taylor, H. A. and M. E. Delany. 2000. Ontogeny of telomerase in chicken: impact of downregulation on pre- and postnatal telomere length in vivo. Dev. Growth Differ. 42:613-621.   DOI   ScienceOn
5 Thomas, P., N. J. O'Callaghan and M. Fenech. 2008. Telomere length in white blood cells, buccal cells and brain tissue and its variation with ageing and Alzheimer's disease. Mech. Ageing Dev. 129:183-190.   DOI   ScienceOn
6 Tsuji, A., A. Ishiko, T. Takasaki and N. Ikeda. 2002. Estimating age of humans based on telomere shortening. Forensic Sci. Int. 126:197-199.   DOI   ScienceOn
7 Vaziri, H., F. Schachter, I. Uchida, L. Wei, X. Zhu, R. Effros, D. Cohen and C. B. Harley. 1993. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am. J. Hum. Genet. 52:661-667.
8 Nanda, I. and M. Schmid. 1994. Localization of the telomeric (TTAGGG)n sequence in chicken (Gallus domesticus) chromosomes. Cytogenet. Cell Genet. 65:190-193.   DOI
9 Nasir, L., P. Devlin, T. McKevitt, G. Rutteman and D. J. Argyle. 2001. Telomere lengths and telomerase activity in dog tissues: a potential model system to study human telomere and telomerase biology. Neoplasia 3:351-359.   DOI
10 O'Callaghan, N., V. Dhillon, P. Thomas and M. Fenech. 2008. A quantitative real-time PCR method for absolute telomere length. BioTechniques 44:807-809.   DOI   ScienceOn
11 Olovnikov, A. M. 1973. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J. Theor. Biol. 41:181-190.   DOI
12 Proctor, C. J. and T. B. Kirkwood. 2002. Modelling telomere shortening and the role of oxidative stress. Mech. Ageing Dev. 123:351-363.   DOI   ScienceOn
13 Ren, F., C. Li, H. Xi, Y. Wen and K. Huang. 2009. Estimation of human age according to telomere shortening in peripheral blood leukocytes of tibetan. Am. J. Forensic Med. Pathol. 30:252-255.   DOI   ScienceOn
14 Salomons, H. M., G. A. Mulder, L. van de Zande, M. F. Haussmann, M. H. Linskens and S. Verhulst. 2009. Telomere shortening and survival in free-living corvids. Proc. Biol. Sci. 276:3157-3165.   DOI   ScienceOn
15 Shiels, P. G., A. J. Kind, K. H. Campbell, D. Waddington, I. Wilmut, A. Colman and A. E. Schnieke. 1999. Analysis of telomere lengths in cloned sheep. Nature 399:316-317.
16 Holmes, D. J., S. L. Thomson, J. Wu and M. A. Ottinger. 2003. Reproductive aging in female birds. Exp. Gerontol. 38:751-756.   DOI   ScienceOn
17 Slijepcevic, P. 2001. Telomere length measurement by Q-FISH. Methods Cell Sci. 23:17-22.   DOI   ScienceOn
18 Sohn, S. H., A. S. Multani P. K. Gugnani and S. Pathak. 2002. Telomere erosion-induced mitotic catastrophe in continuously grown chinese hamster don cells. Exp. Cell Res. 279:271-276.   DOI   ScienceOn
19 Holmes, D. J. and S. N. Austad. 1995. Birds as animal models for the comparative biology of aging: a prospectus. J. Gerontol. A Biol. Sci. Med. Sci. 50:B59-66.
20 Joeng, K. S., E. J. Song, K. J. Lee and J. Lee. 2004. Long lifespan in worms with long telomeric DNA. Nat. Genet. 36:607-611.   DOI   ScienceOn
21 Jung, G. S., E. J. Cho, D. S. Choi, M. J. Lee, C. Park, I. S. Jeon and S. H. Sohn. 2006. Analysis of telomere length and telomerase activity of tissues in Korean Native Chicken. Kor. J. Poul. Sci. 33:97-103.   과학기술학회마을
22 Lavoie, E. T. and K. A. Grasman. 2005. Isolation, cryopreservation, and mitogenesis of peripheral blood lymphocytes from chickens (Gallus domesticus) and wild herring gulls (Larus argentatus). Arch. Environ. Contam. Toxicol. 48:552-558.   DOI
23 McKevitt, T. P., L. Nasir, P. Devlin and D. J. Argyle. 2002. Telomere lengths in dogs decrease with increasing donor age. J. Nutr. 132:1604S-1606S.
24 McKevitt, T. P., L. Nasir, C. V. Wallis and D. J. Argyle. 2003. A cohort study of telomere and telomerase biology in cats. Am. J. Vet. Res. 64:1496-1499.   DOI   ScienceOn
25 Monnier, V. M. 1990. Nonenzymatic glycosylation, the Maillard reaction and the aging process. J. Gerontol. 45:B105-111.   DOI
26 Frenck, R. W. Jr., E. H. Blackburn and K. M. Shannon. 1998. The rate of telomere sequence loss in human leukocytes varies with age. Proc. Natl. Acad. Sci. USA. 95:5607-5610.   DOI   ScienceOn
27 Moyzis, R. K., J. M. Buckingham, L. S. Cram, M. Dani, L. L. Deaven, M. D. Jones, J. Meyne, R. L. Ratliff and J. R. Wu. 1988. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA. 85:6622-6626.   DOI
28 Munshi-South, J. and G. S. Wilkinson. 2010. Bats and birds: Exceptional longevity despite high metabolic rates. Ageing Res. Rev. 9:12-19.   DOI   ScienceOn
29 Forsyth, N. R., W. E. Wright and J. W. Shay. 2002. Telomerase and differentiation in multicellular organisms: turn it off, turn it on, and turn it off again. Differentiation 69:188-197.   DOI   ScienceOn
30 Friedrich, U., E. Griese, M. Schwab, P. Fritz, K. Thon and U. Klotz. 2000. Telomere length in different tissues of elderly patients. Mech. Ageing Dev. 119:89-99.   DOI   ScienceOn
31 Harley, C. B. 1995. Telomeres and aging. In Telomeres (Ed. E. H. Blackburn and C. W. Greider). Cold Spring Harbor Laboratory Press, New York.
32 Harley, C. B., A. B. Futcher and C. W. Greider. 1990. Telomeres shorten during ageing of human fibroblasts. Nature 345:458-460.   DOI   ScienceOn
33 Hastie, N. D., M. Dempster, M. G. Dunlop, A. M. Thompson, D. K. Green and R. C. Allshire. 1990. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346:866-868.   DOI   ScienceOn
34 Hastings, R., N. C. Li, P. S. Lacy, H. Patel, K. E. Herbert, A. G. Stanley and B. Williams. 2004. Rapid telomere attrition in cardiac tissue of the ageing Wistar rat. Exp. Gerontol. 39:855-857.   DOI   ScienceOn
35 Bize, P., F. Criscuolo, N. B. Metcalfe, L. Nasir and P. Monaghan. 2009. Telomere dynamics rather than age predict life expectancy in the wild. Proc. Biol. Sci. 276:1679-1683.   DOI   ScienceOn
36 Haussmann, M. F., C. M. Vleck and I. C. Nisbet. 2003. Calibrating the telomere clock in common terns, Sterna hirundo. Exp. Gerontol. 38:787-789.   DOI   ScienceOn
37 Haussmann, M. F., D. W. Winkler and C. M. Vleck. 2005. Longer telomeres associated with higher survival in birds. Biol. Lett. 1:212-214.   DOI
38 Hewakapuge, S., R. A. van Oorschot, P. Lewandowski and S. Baindur-Hudson. 2008. Investigation of telomere lengths measurement by quantitative real-time PCR to predict age. Leg Med. (Tokyo) 10:236-242.   DOI   ScienceOn
39 Blackburn, E. H. 1991. Telomeres. Trends Biochem. Sci. 16:378-381.   DOI   ScienceOn
40 Blackburn, E. H., S. Chan, J. Chang, T. B. Fulton, A. Krauskopf, M. McEachern, J. Prescott, J. Roy, C. Smith and H. Wang. 2000. Molecular manifestations and molecular determinants of telomere capping. Cold Spring Harb. Symp. Quant. Biol. 65:253-263.   DOI
41 Campisi, J., S. H. Kim, C. S. Lim and M. Rubio. 2001. Cellular senescence, cancer and aging: the telomere connection. Exp. Gerontol. 36:1619-1637.   DOI   ScienceOn
42 Cawthon, R. M. 2002. Telomere measurement by quantitative PCR. Nucleic Acids Res. 30:e47.   DOI   ScienceOn
43 Cawthon, R. M. 2009. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 37(3):e21.   DOI   ScienceOn
44 Cawthon, R. M., K. R. Smith, E. O'Brien, A. Sivatchenko and R. A. Kerber. 2003. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361:393-395.   DOI   ScienceOn
45 Baird, D. M. and D. Kipling. 2004. The extent and significance of telomere loss with age. Ann. NY Acad. Sci. 1019:265-268.   DOI   ScienceOn
46 Cho, E. J., C. H. Choi and S. H. Sohn. 2005. The amount of telomeres and telomerase activity on chicken embryonic cells during developmental stages. J. Anim. Sci. Technol. (Kor) 47:187-794.   과학기술학회마을   DOI   ScienceOn
47 Counter, C. M., A. A. Avilion, C. E. LeFeuvre, N. G. Stewart, C. W. Greider, C. B. Harley and S. Bacchetti. 1992. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11:1921-1929.
48 Delany, M. E., L. M. Daniels, S. E. Swanberg and H. A. Taylor. 2003. Telomeres in the chicken: genome stability and chromosome ends. Poult. Sci. 82:917-926.   DOI
49 Allsopp, R. C., H. Vaziri, C. Patterson, S. Goldstein, E. V. Younglai, A. B. Futcher, C. W. Greider and C. B. Harley. 1992. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA. 89:10114-10118.   DOI   ScienceOn
50 Aviv, A., W. Chen, J. P. Gardner, M. Kimura, M. Brimacombe, X. Cao, S. R. Srinivasan and G. S. Berenson. 2009. Leukocyte telomere dynamics: longitudinal findings among young adults in the Bogalusa Heart Study. Am. J. Epidemiol. 169:323-329.