• Title/Summary/Keyword: hybrid values

Search Result 678, Processing Time 0.026 seconds

A New Criterion of Cell Discard in an ATM Switch with Input and Output Buffers (입출력버퍼형 ATM 교환기의 셀 폐기 방법에 대한 새로운 기준 제안 및 성능 분석)

  • Gwon, Se-Dong;Park, Hyeon-Min;Choe, Byeong-Seok;Park, Jae-Hyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.4
    • /
    • pp.1246-1264
    • /
    • 2000
  • An input-output buffering switch operates in either of tow different cell loss modes; Backpressure mode and Queueloss mode. In the previous studies, the Backpressrue mode is more effective at low traffic loads, and the Queueloss mode performs better at high traffic. We propose a new operation mode, called Hybrid mode, which adopts the advantages of he Backpressure and the Queueloss mode. Backpressure and Queueloss modes are distinguished from whether a cell loss occurs at the output buffer or not when output buffer overflows, irrespective of input buffer status. In order to simply combine Backpressure and Queueloss mode, the change of input traffic load must be measured. However, in the Hybrid mode, simply both of the input and output buffer overflow and checked out to determine the cell discard. The performance of the Hybrid mode is compared with those of the Backpressure and the Queueloss mode under random and bursty traffic. This paper show that the Hybrid mode always gives the best performance results for most ranges of load values.

  • PDF

Hybrid Anti-aliasing Method for 3D Object represented by Point Sampling (포인트 샘플링으로 표현된 3차원 객체를 위한 하이브리드 앤티앨리어싱 방법)

  • Kim, Hak-Ran;Park, Hwa-Jin
    • Journal of Digital Contents Society
    • /
    • v.8 no.1
    • /
    • pp.85-91
    • /
    • 2007
  • This paper proposes a new hybrid anti-aliasing method for reducing aliasing appearing on an implicit surface using the point sampling. The hybrid anti-aliasing method is a method that finds differences in the values of pixel shown in Z-buffers for an implicit surface and thereby uses each of three types of Z-buffer. After determining the level of differences, it expresses a 3 dimensional object by using a multi Z-buffer if the level is severe, a double Z-buffer for a middle level, and only the original Z-buffer for a negligible difference. In comparison with the existing method in which multi Z-buffers have been entirely used for enhancing the anti-aliasing effect, the hybrid anti-aliasing method is an efficient method demonstrating an effect similar to the one using a multi Z-buffer while reducing the number of Z-buffers to be used.

  • PDF

Hybrid BFPSO Approach for Effective Tuning of PID Controller for Load Frequency Control Application in an Interconnected Power System

  • Anbarasi, S.;Muralidharan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1027-1037
    • /
    • 2017
  • Penetration of renewable energy sources makes the modern interconnected power systems to have more intelligence and flexibility in the control. Hence, it is essential to maintain the system frequency and tie-line power exchange at nominal values using Load Frequency Control (LFC) for efficient, economic and reliable operation of power systems. In this paper, intelligent tuning of the Proportional Integral Derivative (PID) controller for LFC in an interconnected power system is considered as a main objective. The chosen problem is formulated as an optimization problem and the optimal gain parameters of PID controllers are computed with three innovative swarm intelligent algorithms named Particle Swarm Optimization (PSO), Bacterial Foraging Optimization Algorithm (BFOA) and hybrid Bacterial Foraging Particle Swarm Optimization (BFPSO) and a comparative study is made between them. A new objective function designed with necessary time domain specifications using weighted sum approach is also offered in this report and compared with conventional objective functions. All the simulation results clearly reveal that, the hybrid BFPSO tuned PID controller with proposed objective function has better control performances over other optimization methodologies.

Simulation of Compression/Absorption Hybrid Heat Pump System using Industrial Wastewater Heat Source (산업폐수열원 이용 증기압축식/흡수식 하이브리드 히트펌프 시스템의 시뮬레이션)

  • Baik Young-Jin;Park Seong-Ryong;Chang Ki-Chang;Ra Ho-Sang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1117-1125
    • /
    • 2004
  • In this study, in order to utilize the waste heat of industrial wastewater in the range of the relatively low temperature of 40~5$0^{\circ}C$ as a heat source, a hybrid heat pump system was considered by computer simulation method. In the simulation, an absorber, desorber and solution heat exchanger were modelled by UA values while a compressor and pump performance were specified by an isentropic efficiency. Simulation results show that the performance of hybrid heat pump can be up to 80% higher than that of conventional R134a heat pump when it makes a process hot water of 9$0^{\circ}C$ while the wastewater is cooled down to 2$0^{\circ}C$. As the absorber pressure increases, the system performance and deserter pressure increase with a favorable effect of a compressor discharge gas temperature drop.

Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes

  • Asteris, Panagiotis G.;Lemonis, Minas E.;Nguyen, Thuy-Anh;Le, Hiep Van;Pham, Binh Thai
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.471-491
    • /
    • 2021
  • In this study, we estimate the ultimate load of rectangular concrete-filled steel tubes (CFST) by developing a novel hybrid predictive model (ANN-BCMO) which is a combination of balancing composite motion optimization (BCMO) - a very new optimization technique and artificial neural network (ANN). For this aim, an experimental database consisting of 422 datasets is used for the development and validation of the ANN-BCMO model. Variables in the database are related with the geometrical characteristics of the structural members, and the mechanical properties of the constituent materials (steel and concrete). Validation of the hybrid ANN-BCMO model is carried out by applying standard statistical criteria such as root mean square error (RMSE), coefficient of determination (R2), and mean absolute error (MAE). In addition, the selection of appropriate values for parameters of the hybrid ANN-BCMO is conducted and its robustness is evaluated and compared with the conventional ANN techniques. The results reveal that the new hybrid ANN-BCMO model is a promising tool for prediction of the ultimate load of rectangular CFST, and prove the effective role of BCMO as a powerful algorithm in optimizing and improving the capability of the ANN predictor.

A Study on Clinching Characteristics for A6451 Aluminum and Galvanized Steels and the Application of Clinching Technology to Automotive Parts (A6451 알루미늄 및 용융아연도금강판의 클린칭 접합특성 및 접합기술의 차체 부품 적용 연구)

  • Kwon, Eui-Pyo;Park, Hyun-kyung
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.886-893
    • /
    • 2018
  • In this study, clinching characteristics of aluminum and galvanized steels were investigated for the application of clinching as a joining technique to aluminum wheelhouse assembly. A6451 aluminium alloy and galvanized steel sheets were joined by hybrid joining(clinching + adhesive bonding). Tensile-shear load and fracture mode of hybrid joints were investigated. Maximum tensile-shear load of hybrid joints was about six times higher than that of clinched joints without adhesive. Energy absorption values of hybrid joints were higher than those of clinched joints without adhesive as well as resistance spot welded steel joints. Developed aluminum wheelhouse assembly showed higher static stiffness than the existing steel parts. Aluminum wheelhouse inner panel unit was 44% lighter than the steel unit, and the final assembled aluminum wheelhouse was 14.6% lighter than the existing steel parts.

PESA: Prioritized experience replay for parallel hybrid evolutionary and swarm algorithms - Application to nuclear fuel

  • Radaideh, Majdi I.;Shirvan, Koroush
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3864-3877
    • /
    • 2022
  • We propose a new approach called PESA (Prioritized replay Evolutionary and Swarm Algorithms) combining prioritized replay of reinforcement learning with hybrid evolutionary algorithms. PESA hybridizes different evolutionary and swarm algorithms such as particle swarm optimization, evolution strategies, simulated annealing, and differential evolution, with a modular approach to account for other algorithms. PESA hybridizes three algorithms by storing their solutions in a shared replay memory, then applying prioritized replay to redistribute data between the integral algorithms in frequent form based on their fitness and priority values, which significantly enhances sample diversity and algorithm exploration. Additionally, greedy replay is used implicitly to improve PESA exploitation close to the end of evolution. PESA features in balancing exploration and exploitation during search and the parallel computing result in an agnostic excellent performance over a wide range of experiments and problems presented in this work. PESA also shows very good scalability with number of processors in solving an expensive problem of optimizing nuclear fuel in nuclear power plants. PESA's competitive performance and modularity over all experiments allow it to join the family of evolutionary algorithms as a new hybrid algorithm; unleashing the power of parallel computing for expensive optimization.

A Numerical Analysis Study on Charging Conditions of Type IV High Aspect Ratio Modular Hydrogen Storage Vessel (Type IV 고세장비 모듈형 수소저장용기의 충전 조건에서의 수치해석적 연구)

  • JOONGTAK BACK;JIHUN MUN;JIHOON MIN;KYUNBUM PARK;KWANGTAIK KI;SUNGWOOK JOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.1
    • /
    • pp.26-31
    • /
    • 2023
  • In this study, in order to propose a modular method for type IV high aspect ratio modular hydrogen storage vessel, a numerical analysis was conducted on the heat transfer behavior in series and parallel connection methods, and the differences according to each connection method were reviewed. Computational fluid dynamics software was used to check the internal temperature and pressure values of the hydrogen storage container under charging conditions. In terms of thermal safety when charging hydrogen gas, it was confirmed that the parallel modularization method was superior.

Effect of Green Tea and Saw Dust Contents on Static Bending Strength Performance of Hybrid Boards Composed of Wood Fiber, Saw Dust and Green Tea (목재섬유, 톱밥 및 녹차 이종복합보드의 정적 휨 강도성능에 미치는 녹차 및 톱밥 배합비율의 영향)

  • Park, Han-Min;Lee, Soo-Kyeong;Seok, Ji-Hoon;Choi, Nam-Kyung;Kwon, Chang-Bae;Heo, Hwang-Sun;Kim, Jong-Chul
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.41-46
    • /
    • 2011
  • In this study, in addition to the green tea-wood fiber hybrid composite boards of previous researches, to make effective use of saw dust of domestic cypress tree with functionalities and application as interior materials, eco-friendly hybrid composite boards were manufactured from wood fiber, green tea and saw dust of cypress tree. We investigated the effect of the component ratio of saw dust and green tea on static bending strength performances. Static bending MOE (modulus of elasticity) was within 0.956~1.18GPa, and showed the highest value in wood fiber : green tea : saw dust = 50 : 40 : 10 of the component ratio, and had the lowest value in 50 : 30 : 20 of component ratio. These values were 2.0~3.1times lower than those of green tea-wood fiber hybrid composite boards reported in the previous researches. The bending MOR (modulus of rupture) showed 8.99~11.5MPa, the change of the bending MOR with component ratio of the factors was the same as that of bending MOE. These values had 1.9~3.5 times lower value than those of green tea-wood fiber hybrid composite boards, and showed the slightly lower values than the MOR of particle boards (PB) and medium density fiberboards (MDF) prescribed in Korean Industrial Standard. Therefore, it is considered that these hybrid composite boards need to improve strength performances by component ratio change, hybrid composite with other materials and adhesive change etc. in order to industrialize the hybrid composite boards.

Development of AHP-MAUT Hybrid Model to Enhance Effectiveness of Decision Support System (의사결정지원시스템 AHP의 편의성 개선을 위한 하이브리드 모형의 개발)

  • Bae Deuk Jong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.421-426
    • /
    • 2024
  • The Analytic Hierarchy Process (AHP) converts people's judgment criteria into objective numerical values using pairwise comparisons. However, the need for an excessive number of pairwise comparisons poses a problem. To mitigate this issue, most existing studies have utilized the process separation approach. The method of process separation devised in this study is a "separation and integration approach," where 1) the standard AHP process is used for evaluating judgment criteria, and 2) the Multi-Attributive Utility Technique (MAUT) is applied for comparing alternatives. This AHP-MAUT Hybrid model was applied to a real analysis case, specifically analyzing the transportation choices of commuters between Bundang and Gangnam Station in Gyeonggi Province. The results showed that the computational process was reduced by 42.03% when applying the Hybrid model compared to using the AHP model alone. Furthermore, the choice results of residents using the Hybrid model were compared with those using the standard AHP. The consistency between the two models' choices was 82.1%, indicating a significant level of consistency. In conclusion, this study contributes by presenting a simpler, more convenient, yet equally effective Hybrid model as a new decision-support system alternative to AHP.