최근 UCC를 중심으로 동영상 데이터에 대해 사람들의 관심이 증가하고 있다. 따라서 동영상 데이터의 내용-기반 검색을 지원하는 효율적인 색인 기법이 요구된다. 그러나 Hybrid Spill-Tree를 제외한 대부분의 색인 기법들은 대용량의 고차원 데이터를 다루는데 비효율적이다. 본 논문에서는 동영상 데이터의 내용-기반 검색을 지원하기 위한 효율적인 고차원 색인 기법을 제안한다. 제안하는 고차원 색인 기법은 기존 Hybrid Spill-Tree을 기반으로 새롭게 제안하는 클러스터링 방법과 시그니쳐를 이용한 데이터 저장 방법을 결합하여 확장된 색인 기법이다. 또한 제안하는 시그니쳐-기반 고차원 색인 기법이 기존 M-Tree 및 Hybrid Spill-Tree에 비해 성능이 우수함을 보인다.
본 논문에서는 기존에 제시된 MR-tree와 SQR-tree의 장점을 결합하여 대용량 공간 데이타를 보다 효율적으로 처리할 수 있는 하이브리드 인덱스 구조인 SQMR-tree(Spatial Quad MR-tree)를 제시한다. MR-tree는 R-tree에 R-tree 리프 노드를 직접 접근해주는 매핑 트리를 적용한 인덱스 구조이고, SQR-tree는 SQ-tree (Spatial Quad-tree)와 SQ-tree의 리프 노드마다 실제로 공간 객체를 저장하는 R-tree가 결합된 인덱스 구조이다. SQMR-tree는 SQR-tree를 기본 구조로 SQR-Tree의 R-tree 마다 매핑 트리가 적용된 형태를 가진다. 따라서, SQMR-tree는 SQR-tree와 같이 공간 객체가 여러 R-tree에 분산 저장되며 질의 영역에 해당하는 R-tree만 접근하면 되기 때문에 공간 질의 처리 비용을 줄일 수 있다. 또한, SQMR-tree는 MR-tree와 같이 매핑 트리를 통해 트리 검색 없이 R-tree 리프 노드의 빠른 접근이 가능하기 때문에 검색 성능을 향상시킬 수 있다. 마지막으로 실험을 통해 SQMR-tree의 우수성을 입증하였다.
본 논문에서는 RFID 시스템에서 쿼리 트리 기반의 태그 충돌 중재를 위한 새로운 프로토콜을 제안한다. 제안한 하이브리드 쿼리 트리(Hybrid Query Tree) 기법은 이진 쿼리 트리 대신에 4-ary 쿼리 트리를 이용하여 태그 충돌 수를 줄였으며 추가적으로 발생하는 유휴 시간을 줄이기 위해 slotted 백오프 기법을 활용하였다. 실험결과 및 수학적 분석은 제안한 하이브리드 쿼리 트리 프로토콜이 기존에 제시된 기법보다 우수한 성능을 보임을 입증한다.
대표적인 트리 기반 공간 인덱스 구조는 크게 R-Tree와 같은 데이타 분할 기반 인덱스 구조와 KD-Tree와 같은 공간 분할 기반 인덱스 구조로 구분되며, 최근에는 이들의 장점을 결합한 하이브리드 인덱스 구조에 대한 연구가 활발히 진행되고 있다. 그러나, 기존 연구에서는 공간 객체가 삽입되는 노드의 분할 경계 확장이 다른 이웃 노드에 연쇄적으로 전파되어 노드간 겹침이 증가하고 질의 처리 비용이 높아지는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 효율적인 질의 처리를 위한 하이브리드 인덱스 구조인 SQR-Tree를 제시한다. SQR-Tree는 크기를 갖는 공간 객체 처리에 적합하도록 Quad-Tree를 확장한 SQ-Tree(Spatial Quad-Tree)와 SQ-Tree의 리프 노드마다 연계되어 실제로 공간 객체를 저장하는 R-Tree가 결합된 인덱스 구조이다. SQR-Tree는 노드마다 하위 노드를 포함하는 MBR을 가지고 있기 때문에 노드의 분할 경계 확장이 독립적으로 이루어지도록 하여 노드간 겹침을 줄였다. 그리고 SQR-Tree에서 공간 객체는 분할된 데이타 공간마다 존재하는 여러 R-Tree에 분산 저장되며 SQ-Tree가 분할된 데이타 공간을 식별하는 기능을 수행한다. 따라서 공간 질의 처리시 질의 영역에 해당하는 R-Tree만 접근하면 되기 때문에 질의 처리 비용을 줄일 수 있다. 마지막으로 실험을 통해 SQR-Tree의 우수성을 입증하였다.
The conventional hard disk has been the dominant database storage system for over 25 years. Recently, hybrid systems which incorporate the advantages of flash memory into the conventional hard disks are considered to be the next dominant storage systems to support databases for desktops and server computers. Their features are satisfying the requirements like enhanced data I/O, energy consumption and reduced boot time, and they are sufficient to hybrid storage systems as major database storages. However, we need to improve traditional index node management schemes based on B-Tree due to the relatively slow characteristics of hard disk operations, as compared to flash memory. In order to achieve this goal, we propose a new index node management scheme called FNC-Tree. FNC-Tree-based index node management enhanced search and update performance by caching data objects in unused free area of flash leaf nodes to reduce slow hard disk I/Os in index access processes.
The rectilinear Steiner tree problem (RSTP) is to find a minimum-length rectilinear interconnection of a set of terminals in the plane. It is well known that the solution to this problem will be the minimal spanning tree(MST) on some set Steiner points. The RSTP is known to be NP-complete. The RSTP has received a lot of attention in the literature and heuristic and optimal algorithms have been proposed. A key performance measure of the algorithm for the RSTP is the reduction rate that is achieved by the difference between the objective value of the RSTP and that of the MST without Steiner points. A hybrid evolutionary strategy on RSTP based upon nodes set is presented. The computational results show that the hybrid evolutionary strategy is better than the previously proposed other heuristic. The average reduction rate of solutions from the evolutionary strategy is about 11.14%, which is almost similar to that of optimal solutions.
This study presents an innovative AI-driven approach to assess the ultimate axial load in Double-Skinned Profiled Steel sheet Composite Walls (DPSCWs). Utilizing a dataset of 80 entries, seven input parameters were employed, and various AI techniques, including Linear Regression, Polynomial Regression, Support Vector Regression, Decision Tree Regression, Decision Tree with AdaBoost Regression, Random Forest Regression, Gradient Boost Regression Tree, Elastic Net Regression, Ridge Regression, and LASSO Regression, were evaluated. Decision Tree Regression and Random Forest Regression emerged as the most accurate models. The top three performing models were integrated into a hybrid approach, excelling in accurately estimating DPSCWs' ultimate axial load. This adaptable hybrid model outperforms traditional methods, reducing errors in complex scenarios. The validated Artificial Neural Network (ANN) model showcases less than 1% error, enhancing reliability. Correlation analysis highlights robust predictions, emphasizing the importance of steel sheet thickness. The study contributes insights for predicting DPSCW strength in civil engineering, suggesting optimization and database expansion. The research advances precise load capacity estimation, empowering engineers to enhance construction safety and explore further machine learning applications in structural engineering.
The high cost in maintaining complex manufacturing process makes it necessary to enhance an efficient maintenance system. For the effective maintenance of manufacturing process, precise fault diagnosis should be performed and an appropriate maintenance action should be executed. This paper suggests an intelligent fault diagnosis system using hybrid data mining. In this system, the rules for the fault diagnosis are generated by hybrid decision tree/genetic algorithm and the most effective maintenance action is selected by decision network and AHP. To verify the proposed intelligent fault diagnosis system, we compared the accuracy of the hybrid decision tree/genetic algorithm with one of the general decision tree learning algorithm(C4.5) by data collected from a coil-spring manufacturing process.
RFID 시스템에서 리더와 태그는 단일 무선 공유 채널을 갖기 때문에 RFID 수동형 태그를 위한 태그 충돌 중재가 태그 인식을 위한 중요한 이슈이다. 본 논문에서는 태그 충돌 방지를 위한 하이브리드 하이퍼 쿼리 트리 알고리즘($H^{2}QT$, Hybrid Hyper Query Tree)을 제안한다. 제안된 알고리즘은 쿼리 트리를 기반으로 태그가 리더에게 ID를 전송하는 시점을 전송ID 상위 3비트 내의 '1'값을 이용하여 결정한다. 또한 전송 받은 Tag의 상위 3비트는 충돌이 발생하더라도 전송 슬롯에 따라 다르므로 제안한 알고리즘에서 예측이 가능하다. 시뮬레이션을 통한 성능 평가에서 다른 트리 기반 프로토콜에 비해 제안한 알고리즘이 쿼리 횟수에서 높은 성능을 갖는다는 것을 보여준다.
본 연구는 조경수용 무궁화 우수품종 보급을 위한 유전자원 수집과 특성을 평가하기 위해 최근 국내외에서 육성된 127품종의 1년생 접목묘를 이용하여 2014년부터 2015년까지 2년 동안 생육 및 형태적 특성조사를 실시하였다. 수집된 품종 중 키가 큰 가로수 및 독립수용 품종, 왜성형 분화 및 지피용 품종 등을 선정하여 무궁화를 조경수로 활용도를 높이는데 기여하고자 하였으며 얻어진 결과는 다음과 같다. 최근 국내외에서 육성된 나라꽃 무궁화 품종들의 생육특성을 조사하기 위해 먼저 접목 1년생 수고를 조사한 결과 20~120cm까지 다양하게 나타났다. 무궁화 '주몽'과 '홍가로수', 종간교잡종 Hibiscus hybrid 'Daewangchun', 'Daeil', 'Lohengrin', 'Jina', 'Yeonam' 등이 키가 100cm 이상으로 가장 큰 품종으로 조사되었다. 최근 국내외에서 육성된 무궁화 127품종 중 조경적 활용가치가 높은 교목성 가로수로 이용할 수 있는 품종은 무궁화 '주몽'과 '홍가로수', 종간교잡종 Hibiscus hybrid 'Daewangchun', Hibiscus hybrid 'Daeil', Hibiscus hybrid 'Lohengrin', Hibiscus hybrid 'Jina', Hibiscus hybrid 'Yeonam' 등이 있었다. 분화 및 분재용으로 이용할 수 있는 왜성형 품종으로는 'Red Heart', '백령도', 종간교잡종 '진선', '꼬마', '여천', '야음' 등이 있었으며, 키가 30cm 미만의 아주 작은 품종으로는 '안동', '청조', 'Lil Kim' 등이 포함되었다. 수고가 작은 왜성형으로 가지의 생장이 아래로 향하는 '탐라', 'Melrose', '비단', '하이리', '별이', '병화', '미백', '한양', '청암', 'Lil Kim Violet', '종무', '은하수', 종간교잡종 Hibiscus hybrid 'Saehanseo'와 Hibiscus hybrid 'Yousoon'은 화단 및 지피용 소재로 이용가치가 높았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.