• Title/Summary/Keyword: hybrid synthetic peptides

Search Result 8, Processing Time 0.027 seconds

Antifungal Activities of Magainin-2 Hybrid Peptides against Trichosporon beigelii

  • LEE, DONG GUN;SONG YUB SHIN;SUNG GU LEE;KIL LYONG KIM;MYUNG KYU LEE;KYUNG SOO HAHM
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.49-51
    • /
    • 1997
  • In order to obtain a hybrid synthetic peptide with a more potent antifungal activity than magainin-2 but without hemolytic activity, four hybrid peptides were designed from the sequences of magainin 2 and cecropin A and their antifungal activities against Trichosporon beigelii were investigated. The result showed that analogue 2 and 4 exhibited better antifungal activity against T. beigelii than magainin-2 but no hemolytic activities. The peptides, therefore, could be used as models for the development of potent antifungal peptides.

  • PDF

Antibacterial Activities of Peptides Designed as Hybrids of Antimicrobial Peptides

  • Shin, Song-Yub;Kang, Joo-Hyun;Lee, Myung-Kyu;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.545-548
    • /
    • 1996
  • CA(1-8)ME(1-12), the CA-ME hybrid peptide of the amino terminal segments of cecropin A (CA) and melittin (ME), has been reported to have a broad spectrum and improved potency without a hemolytic property. In order to obtain new synthetic peptides with powerful antibacterial activity without hemolytic activity, several hybrid peptides were designed from the sequences of CA, ME, magainin 2, bombinin and lactoferricin. All hybrid peptides were constructed to form an amphipathically basic-flexible-hydrophobic structure and synthesized by the solid phase method. Their hemolytic activities against human red blood cells and antibacterial activities against both Gram-positive and Gram-negative bacteria were detennined. CA(1-8)MA(1-12), CA(1-8)BO(1-12), MA(10-17)ME(1-12) and LF(20-29)ME(1-12) showed comparable activities with broad spectra against both Gram-positive and Gram-negative bacteria relative to CA(1-8)ME(1-12) but without hemolytic properties. These hybrid peptides, therefore, could be useful as model peptides to design a novel peptide with improved antibacterial activity and study on structure-activity relationships of antimicrobial peptides.

  • PDF

Fungicidal and Hemolytic Activity of Cecropin A-Magainin 2 Analogue Peptides against Tri-chospoon beigelii and Human Red Blood Cells (Cecropin A-Magainin 2 유도체 펩티드의 Trichosporon beigelii에 대한 항진균 활성 및 인간 적혈구 세포에 대한 용혈활성)

  • 이동건;신송엽;이명규;함경수
    • Korean Journal of Microbiology
    • /
    • v.33 no.3
    • /
    • pp.170-174
    • /
    • 1997
  • In order to design a novel synthetic peptide with improved fungicidal activity but low hemolytic activity, a hybrid peptide, cecropin A(l-8)-magainin 2(1-12), and its analogue peptides were synthesized by the solid phase method. Antifungal and hemolytic activities of the synthetic peptides were assessed by the growth inhibition against Trichosporon beigelii and the cell membrane lysis against human red hlood cells, respectively. Analogue 2 in which Lys at position 12 in cecropin A(1-8)-magainin 2(1-12) was substituted with Ala showed most potent antifungal activity (MIC: 2.5.$\mu$g/ml) with minimal hemolytic activity (0.5% hemolysis at the (200.$\mu$g/ml peptide). This peptide (A2), therefore, could be useful as a model for further designing potent antifungal peptides without cytotoxicity.

  • PDF

Analogues of Hybrid Antimicrobial Peptide, CAMA-P2, Designed with Improved Antimicrobial and Synergistic Activities

  • Jeong, Ki-Woong;Shin, So-Young;Kim, Jin-Kyoung;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2577-2583
    • /
    • 2011
  • We have designed a 20-residue hybrid peptide CA(1-8)-MA(1-12) (CAMA) incorporating residues 1-8 of cecropin A (CA) and residues 1-12 of magainin 2 (MA) with high bacterial cell selectivity. CAMA-P2 is an ${\alpha}$-helical antimicrobial peptide designed from a CAMA hybrid peptide and substitution of Gly-Ile-Gly hinge sequence of CAMA to Pro influences the flexibility at central part of CAMA. Based on structure-activity relationships of CAMA peptides, to investigate the effects of the total positive charges on antimicrobial activity of CAMA-P2, the $Ser^{14}{\rightarrow}$Lys analogue (CAMA-syn1) was synthesized. The role of tryptophan at C-terminal ${\alpha}$-helix on its antimicrobial activity as well as synergistic activity was also investigated using $Ser^{14}{\rightarrow}$Lys/$Phe^{18}{\rightarrow}$Trp analogue (CAMA-syn2). Also, we designed CAMA-syn3 by substitution of $Lys^{16}$ located opposite side of substituted $Lys^{14}$ of CAMA-syn1 with Leu residue, resulting in increase of hydrophobicity and amphipathicity of the peptide. All of CAMA-syn analogues showed good antimicrobial activities similar to those of CAMA and CAMA-P2. The CAMA-syn1 and CAMA-syn2 showed low hemolytic activity and cytotoxicity against human keratinocyte Haca-T cells while CAMA-syn3 showed hemolytic activity and cytotoxicity at its MIC value. We then investigated their abilities to act synergistically in combination with the antimicrobial flavonoids and synthetic compounds screened in our laboratory. The results showed that all peptides exhibited synergistic effects with dihydrobinetin, while only CAMA-syn2 exhibited synergistic effects with YKAs3001 against both S. aureus and MRSA, suggesting that Trp residue at C-terminus of CAMA-syn2 may facilitate the polar antibiotic flavonoids and synthetic compounds to permeabilize the membrane. This study will be useful for the development of new antibiotic peptides with potent antimicrobial and synergistic activity but without cytotoxicity.

Antibacterial Activity and Synergism of the Hybrid Antimicrobial Peptide, CAMA-syn

  • Jeong, Ki-Woong;Shin, So-Young;Kim, Jin-Kyoung;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1839-1844
    • /
    • 2009
  • A 20-residue hybrid peptide CA(1-8)-MA(1-12) (CAMA) incorporating residues 1-8 of cecropin A (CA) and residues 1-12 of magainin 2 (MA) has high antimicrobial activity without toxicity. To investigate the effects of the total positive charges of CAMA on the antibacterial activity and toxicity, a hybrid peptide analogue (CAMA-syn) was designed with substitutions of $Ile^{10}\;and\;Ser^{16}$ with Lys. According to CD spectra, structure of CAMA-syn with increase of cationicity was very similar to that of CAMA in DPC micelle. CAMA-syn showed antimicrobial activity similar with CAMA while CAMA-syn has no hemolytic activity and much lower cytotoxicity against RAW 264.7 macrophage cells than CAMA. Also, CAMA and CAMA-syn significantly inhibited NO production by LPSstimulated RAW264.7 macrophage at 10.0∼20.0 $\mu$M. CAMA-syn displayed salt resistance on antimicrobial activity against Escherichia coli at the physiological concentrations of $CaCl_2\;and\;MgCl_2$. The combination studies of peptides and antibiotics showed that CAMA-syn has synergistic effects with synthetic compound and flavonoid against Enterococcus faecalis and VREF. CAMA-syn can be a good candidate for the development of new antibiotics with potent antibacterial and synergistic activity but without cytotoxicity.

Inhibition of matrix metalloproteinases: a troubleshooting for dentin adhesion

  • de Moraes, Izadora Quintela Souza;do Nascimento, Ticiano Gomes;da Silva, Antonio Thomas;de Lira, Lilian Maria Santos Silva;Parolia, Abhishek;de Moraes Porto, Isabel Cristina Celerino
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.3
    • /
    • pp.31.1-31.20
    • /
    • 2020
  • Matrix metalloproteinases (MMPs) are enzymes that can degrade collagen in hybrid layer and reduce the longevity of adhesive restorations. As scientific understanding of the MMPs has advanced, useful strategies focusing on preventing these enzymes' actions by MMP inhibitors have quickly developed in many medical fields. However, in restorative dentistry, it is still not well established. This paper is an overview of the strategies to inhibit MMPs that can achieve a long-lasting material-tooth adhesion. Literature search was performed comprehensively using the electronic databases: PubMed, ScienceDirect and Scopus including articles from May 2007 to December 2019 and the main search terms were "matrix metalloproteinases", "collagen", and "dentin" and "hybrid layer". MMPs typical structure consists of several distinct domains. MMP inhibitors can be divided into 2 main groups: synthetic (synthetic-peptides, non-peptide molecules and compounds, tetracyclines, metallic ions, and others) and natural bioactive inhibitors mainly flavonoids. Selective inhibitors of MMPs promise to be the future for specific targeting of preventing dentin proteolysis. The knowledge about MMPs functionality should be considered to synthesize drugs capable to efficiently and selectively block MMPs chemical routes targeting their inactivation in order to overcome the current limitations of the therapeutic use of MMPs inhibitors, i.e., easy clinical application and long-lasting effect.

Development of a Novel Short Synthetic Antibacterial Peptide Derived from the Swallowtail Butterfly Papilio xuthus Larvae

  • Kim, Seong Ryul;Choi, Kwang-Ho;Kim, Kee-Young;Kwon, Hye-Yong;Park, Seung-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1305-1309
    • /
    • 2020
  • Insects possess biological defense systems that can effectively combat the invasion of external microorganisms and viruses, thereby supporting their survival in diverse environments. Antimicrobial peptides (AMPs) represent a fast-acting weapon against invading pathogens, including various bacterial or fungal strains. A 37-residue antimicrobial peptide, papiliocin, derived from the swallowtail butterfly Papilio xuthus larvae, showed significant antimicrobial activities against several human pathogenic bacterial and fungal strains. Jelleines, isolated as novel antibacterial peptides from the Royal Jelly (RJ) of bees, exhibit broad-spectrum protection against microbial infections. In this study, we developed a novel antimicrobial peptide, PAJE (RWKIFKKPFKISIHL-NH2), which is a hybrid peptide prepared by combining 1-7 amino acid residues (RWKIFKK-NH2) of papiliocin and 1-8 amino acid residues (PFKISIHL-NH2) of Jelleine-1 to alter length, charge distribution, net charge, volume, amphipaticity, and improve bacterial membrane interactions. This novel peptide exhibited increased hydrophobicity and net positive charge for binding effectively to the negatively charged membrane. PAJE demonstrated antimicrobial activity against both gram-negative and gram-positive bacteria, with very low toxicity to eukaryotic cells and an inexpensive process of synthesis. Collectively, these findings suggest that this novel peptide possesses great potential as an antimicrobial agent.

Influences of Hinge Region of a Systhetic Antimicrobial Peptide, Cecropin A(1-13)-Melittin(1-13) Hybrid on Antibiotic Activity

  • 신송엽;강주현;이동건;장소윤;서무열;김길룡;함경수
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1078-1084
    • /
    • 1999
  • A synthetic cecropin A(1-13)-melittin(1-13) [CA-ME] hybrid peptide was known to be an antimicrobial peptide having strong antibacterial, antifungal and antitumor activity with minimal cytotoxic effect against human erythrocyte. Analogues were synthesized to investigate the influences of the flexible hinge region of CA-ME on the antibiotic activity. Antibiotic activity of the peptides was measured by the growth inhibition against bac-terial, fungal and tumor cells and vesicle-aggregating or disrupting activity. The deletion of Gln-Gly-Ile (P1) or Gly-Gln-Gly-Ile-Gly (P3) from CA-ME brought about a significant decrease on the antibiotic activities. In contrast, Gly-Ile-Gly deletion (P2) from CA-ME or Pro insertion (P5) instead of Gly-Gln-Gly-Ile-Gly of CA-ME retained antibiotic activity. This result indicated that the flexible hinge or β-bend structure provided by Gly-Gln-Gly-Ile-Gly, Gln-Gly, or Pro in the central region of the peptides is requisite for its effective antibiotic activity and may facilitate easily the hydrophobic C-terminal region of the peptide to penetrate the lipid bilayers of the target cell membrane. In contrast, P4 and P6 with Gly-Gln-Gly-Pro-Gly or Gly-Gln-Pro in the central region of the peptide caused a drastic reduction on the antibiotic activities. This result suggested that the con-secutive β-bend structure provided by Gly-Gln-Gly-Pro-Gly or Gly-Gln-Pro in the central hinge region of the peptide seems to interrupt the ion channel/pore formation on the target cell membranes.