• Title/Summary/Keyword: hybrid structural system

Search Result 324, Processing Time 0.021 seconds

Enhanced Bioslurping System for Remediation of Petroleum Contaminated Soils (Enhanced Bioslurping system을 이용한 유류오염 토양의 복원)

  • Kim Dae-Eun;Seo Seung-Won;Kim Min-Kyoung;Kong Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.35-43
    • /
    • 2005
  • Bioslurping combines the three remedial approaches of bioventing, vacuum-enhanced free-product recovery, and soil vapor extraction. Bioslurping is less effective in tight (low-permeability) soils. The greatest limitation to air permeability is excessive soil moisture. Optimum soil moisture is very soil-specific. Too much moisture can reduce air permeability of the soil and decrease its oxygen transfer capability. Too little moisture will inhibit microbial activity. So Modified Fenton reaction as chemical treatment which can overcome the weakness of Bioslurping was experimented for simultaneous treatment. Although the diesel removal efficiency of SVE process increased in proportion to applied vacuum pressure, SVE process was difficulty to remediation quickly semi- or non-volatile compounds absorbed soil strongly. And SVE process had variation of efficiency with distance from the extraction well and depth a air flow form of hemisphere centering around the well. Below 0.1 % hydrogen peroxide shows the potential of using hydrogen peroxide as oxygen source but the co-oxidation of chemical and biological treatment was impossible because of the low efficiency of Modified Fenton reaction at 0.1 % (wt) hydrogen peroxide. NTA was more efficiency than EDTA as chelating agent and diesel removal efficiency of Modified Fenton reaction increased in proportion to hydrogen peroxide concentration. Hexadecane as typical aliphatic compound was removed less than Toluene as aromatic compound because of its structural stability in Modified Fenton reaction. What minimum 10% hydrogen peroxide concentration has good remediation efficiency of diesel contaminated groundwater may show the potential use of Modified Fenton reaction after bioslurping treatment.

Hightechnology industrial development and formation of new industrial district : Theory and empirical cases (첨단산업발전과 신산업지구 형성 : 이론과 사례)

  • ;Park, Sam Ock
    • Journal of the Korean Geographical Society
    • /
    • v.29 no.2
    • /
    • pp.117-136
    • /
    • 1994
  • Contemporary global space economy is so dynamic that any one specific structural force can not explain the whole dynamic processes or trajectories of spatial industrial development. The major purpose of this paper is extending the traditional notion of industrial districts to functioning and development of new industrial districts with relation to the development of high technology industries. Several dynamic forces, which are dominated in new industrial districts in the modern space economy, are incorporated in the formation and dynamic aspects of new industrial districts. Even though key forces governing Marshallian industrial district are localization of small firms, division of labor between firms, constructive cooperation, and industrial atmosphere, Marshall points out a possibility of growing importance of large firms and non-local networks in the districts with changes of external environments. Some of Italian industrial districts can be regarded as Marshallian industrial districts in broader context, but the role of local authorities or institutions and local embeddedness seem to be more important in the Italian industrial districts. More critical implication form the review of Marshallian industrial districts and Italian industrial districts is that the industrial districts are not a static concept but a dynamic one: small firm based industrial districts can be regarded as only a specific feature evolved over time. Dynamic aspects of new industrial districts are resulting from coexistence of contrasting forces governing the functioning and formation of the districts in contemporary global space economy. The contrasting forces governing new industrial districts are coexistence of flexible and mass production systems, local and global networks, local and non-local embeddedness, and small and large firms. Because of these coexistence of contrasting forces, there are various types of new industrial districts. Nine types of industrial districts are identified based on local/non-local networks and intensity of networks in both suppliers and customers linkages. The different types of new industrial districts are described by differences in production systems, embeddedness, governance, cooperation and competition, and institutional factors. Out of nine types of industrial districts, four types - Marshallian; suppliers hub and spoke; customers hub and spoke; and satellite - are regarded as distinctive new industrial districts and four additional types - advanced hub and spoke types (suppliers and customers) and mature satellites (suppliers and customers) - can be evolved from the distinctive types and may be regarded as hybrid types. The last one - pioneering high technology industrial district - can be developed from the advanced hub and spoke types and this type is a most advanced modern industrial district in the era of globalization and high technology. The dynamic aspects of the districts are related with the coexistence of the contrasting forces in the contemporary global space economy. However, the development trajectory is not a natural one and not all the industrial districts can develop to the other hybrid types. Traditionally, localization of industries was developed by historical chances. In the process of high technology industrial development in contemporary global space economy, however, policy and strategies are critical for the formation and evolution of new industrial districts. It needs formation of supportive tissues of institutions for evolution of dyamic pattern of high technology related new industrial districts. Some of the original distinctive types of new industrial districts can not follow the path or trajectory suggested in this paper and may be declined without advancing, if there is no formation of supportive social structure or policy. Provision of information infrastructure and diffusion of an entrepreneurship through the positive supports of local government, public institutions, universities, trade associations and industry associations are important for the evolution of the dynamic new industrial districts. Reduction of sunk costs through the supports for training and retraining of skilled labor, the formation of flexible labor markets, and the establishment of cheap and available telecommunication networks is also regarded as a significant strategies for dynamic progress of new industrial districts in the era of high technology industrial development. In addition, development of intensive international networks in production, technology and information is important policy issue for formation and evolution of the new industrial districts which are related with high technology industrial development.

  • PDF

Heavy concrete shielding properties for carbon therapy

  • Jin-Long Wang;Jiade J Lu;Da-Jun Ding;Wen-Hua Jiang;Ya-Dong Li;Rui Qiu;Hui Zhang;Xiao-Zhong Wang;Huo-Sheng Ruan;Yan-Bing Teng;Xiao-Guang Wu;Yun Zheng;Zi-Hao Zhao;Kai-Zhong Liao;Huan-Cheng Mai;Xiao-Dong Wang;Ke Peng;Wei Wang;Zhan Tang;Zhao-Yan Yu;Zhen Wu;Hong-Hu Song;Shuo-Yang Wei;Sen-Lin Mao;Jun Xu;Jing Tao;Min-Qiang Zhang;Xi-Qiang Xue;Ming Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2335-2347
    • /
    • 2023
  • As medical facilities are usually built at urban areas, special concrete aggregates and evaluation methods are needed to optimize the design of concrete walls by balancing density, thickness, material composition, cost, and other factors. Carbon treatment rooms require a high radiation shielding requirement, as the neutron yield from carbon therapy is much higher than the neutron yield of protons. In this case study, the maximum carbon energy is 430 MeV/u and the maximum current is 0.27 nA from a hybrid particle therapy system. Hospital or facility construction should consider this requirement to design a special heavy concrete. In this work, magnetite is adopted as the major aggregate. Density is determined mainly by the major aggregate content of magnetite, and a heavy concrete test block was constructed for structural tests. The compressive strength is 35.7 MPa. The density ranges from 3.65 g/cm3 to 4.14 g/cm3, and the iron mass content ranges from 53.78% to 60.38% from the 12 cored sample measurements. It was found that there is a linear relationship between density and iron content, and mixing impurities should be the major reason leading to the nonuniform element and density distribution. The effect of this nonuniformity on radiation shielding properties for a carbon treatment room is investigated by three groups of Monte Carlo simulations. Higher density dominates to reduce shielding thickness. However, a higher content of high-Z elements will weaken the shielding strength, especially at a lower dose rate threshold and vice versa. The weakened side effect of a high iron content on the shielding property is obvious at 2.5 µSv=h. Therefore, we should not blindly pursue high Z content in engineering. If the thickness is constrained to 2 m, then the density can be reduced to 3.3 g/cm3, which will save cost by reducing the magnetite composition with 50.44% iron content. If a higher density of 3.9 g/cm3 with 57.65% iron content is selected for construction, then the thickness of the wall can be reduced to 174.2 cm, which will save space for equipment installation.

A Study on the Effect of Network Centralities on Recommendation Performance (네트워크 중심성 척도가 추천 성능에 미치는 영향에 대한 연구)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.23-46
    • /
    • 2021
  • Collaborative filtering, which is often used in personalization recommendations, is recognized as a very useful technique to find similar customers and recommend products to them based on their purchase history. However, the traditional collaborative filtering technique has raised the question of having difficulty calculating the similarity for new customers or products due to the method of calculating similaritiesbased on direct connections and common features among customers. For this reason, a hybrid technique was designed to use content-based filtering techniques together. On the one hand, efforts have been made to solve these problems by applying the structural characteristics of social networks. This applies a method of indirectly calculating similarities through their similar customers placed between them. This means creating a customer's network based on purchasing data and calculating the similarity between the two based on the features of the network that indirectly connects the two customers within this network. Such similarity can be used as a measure to predict whether the target customer accepts recommendations. The centrality metrics of networks can be utilized for the calculation of these similarities. Different centrality metrics have important implications in that they may have different effects on recommended performance. In this study, furthermore, the effect of these centrality metrics on the performance of recommendation may vary depending on recommender algorithms. In addition, recommendation techniques using network analysis can be expected to contribute to increasing recommendation performance even if they apply not only to new customers or products but also to entire customers or products. By considering a customer's purchase of an item as a link generated between the customer and the item on the network, the prediction of user acceptance of recommendation is solved as a prediction of whether a new link will be created between them. As the classification models fit the purpose of solving the binary problem of whether the link is engaged or not, decision tree, k-nearest neighbors (KNN), logistic regression, artificial neural network, and support vector machine (SVM) are selected in the research. The data for performance evaluation used order data collected from an online shopping mall over four years and two months. Among them, the previous three years and eight months constitute social networks composed of and the experiment was conducted by organizing the data collected into the social network. The next four months' records were used to train and evaluate recommender models. Experiments with the centrality metrics applied to each model show that the recommendation acceptance rates of the centrality metrics are different for each algorithm at a meaningful level. In this work, we analyzed only four commonly used centrality metrics: degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. Eigenvector centrality records the lowest performance in all models except support vector machines. Closeness centrality and betweenness centrality show similar performance across all models. Degree centrality ranking moderate across overall models while betweenness centrality always ranking higher than degree centrality. Finally, closeness centrality is characterized by distinct differences in performance according to the model. It ranks first in logistic regression, artificial neural network, and decision tree withnumerically high performance. However, it only records very low rankings in support vector machine and K-neighborhood with low-performance levels. As the experiment results reveal, in a classification model, network centrality metrics over a subnetwork that connects the two nodes can effectively predict the connectivity between two nodes in a social network. Furthermore, each metric has a different performance depending on the classification model type. This result implies that choosing appropriate metrics for each algorithm can lead to achieving higher recommendation performance. In general, betweenness centrality can guarantee a high level of performance in any model. It would be possible to consider the introduction of proximity centrality to obtain higher performance for certain models.