• 제목/요약/키워드: hybrid steel fiber

검색결과 179건 처리시간 0.019초

Engineering Performance of a Rapid Hardening Hydraulic Binder with Hybrid Fiber

  • Li, Mao;Kim, Jin-Man;Choi, Sun-Mi
    • 한국건축시공학회지
    • /
    • 제16권3호
    • /
    • pp.279-288
    • /
    • 2016
  • The fundamental performance of any construction material should cover at least two phases: safety and serviceability. Safety commonly represents adequate strength, while serviceability encompasses the control of cracking and deflections at service loads. With respect to rapid hydraulic binders as a construction material, the above two phases should also be considered. Recent research on rapid cooling ladle furnace slag (RC-LFS) has drawn much attention, particularly given that it shows remarkable rapid hydraulic ability to pulverize to a fineness of $6,300cm^2/g$. This industrial byproduct could contribute to developing the sustainability of the rapidly hardening cementitious material system. This paper aims to expand upon the applicability of an RC-LFS-based binder that is composed of two parts. It also seeks to illustrate the engineering performance of an RC-LFS-based hybrid fiber-reinforced composite and to increase the strength of the RC-LFS-based composite. Each step of this experiment followed ASTM standards. The engineering performance, in both fresh state and hardening state, was tested and discussed in this paper. According to the experimental results for fresh concrete, the air content increased following the addition of polypropylene fiber. For hardened concrete, the toughness and strength improved following the addition of a hybrid fiber. The hybrid fiber mixture, which contains 0.75% of steel fiber and 0.25% of polypropylene fiber, shows even better engineering performance than other mixtures.

Analysis of steel-GFRP reinforced concrete circular columns

  • Shraideh, M.S.;Aboutaha, R.S.
    • Computers and Concrete
    • /
    • 제11권4호
    • /
    • pp.351-364
    • /
    • 2013
  • This paper presents results from an analytical investigation of the behavior of steel reinforced concrete circular column sections with additional Glass Fiber Reinforced Polymers (GFRP) bars. The primary application of this composite section is to relocate the plastic hinge region from the column-footing joint where repair is difficult and expensive. Mainly, the study focuses on the development of the full nominal moment-axial load (M-P) interaction diagrams for hybrid concrete sections, reinforced with steel bars as primary reinforcement, and GFRP as auxiliary control bars. A large parametric study of circular steel reinforced concrete members were undertaken using a purpose-built MATLAB(c) code. The parameters considered were amount, location, dimensions and mechanical properties of steel, GFRP and concrete. The results indicate that the plastic hinge was indeed shifted to a less critical and congested region, thus facilitating cost-effective repair. Moreover, the reinforced concrete steel-GFRP section exhibited high strength and good ductility.

화음탐색법을 이용한 강섬유 및 하이브리드 섬유보강 콘크리트의 최적배합 설계 (Optimal Mix Proportion of Steel Fiber and Hybrid Fiber Reinforced Concrete Using Harmony Search)

  • 이치훈;이주하;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.280-283
    • /
    • 2004
  • Today, the guide line of the SFRC mix design and the construction was not embodied, and the convenience of the practical application on the spot is not good. In this research, hence, the program which is optimized to result the mix proportion by the flexural strength and toughness, was developed to apply with ease SFRC on the practical spot. This program would minimize the number of trial mixes and achieve an economical and appropriate mixture. In addition, the theoretical background on which the program is based, will be the basis of the embodied method to mixing SFRC. New algorithm, in this research, was used to develop the mix proportioning program of SFRC. The new algorithm is the Harmony Search which is the heuristic method mimicking the improvisation of music players. And, beside to single fiber reinforced concrete, it was developed the program about the hybrid fiber reinforced concrete that two kinds of steel fibers, which have the different geometry, was reinforced. This will be able to keep the world trend to study, hence, offers the basis of the next generation research.

  • PDF

Mode II Fracture Toughness of Hybrid FRCs

  • Abou El-Mal, H.S.S.;Sherbini, A.S.;Sallam, H.E.M.
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권4호
    • /
    • pp.475-486
    • /
    • 2015
  • Mode II fracture toughness ($K_{IIc}$) of fiber reinforced concrete (FRC) has been widely investigated under various patterns of test specimen geometries. Most of these studies were focused on single type fiber reinforced concrete. There is a lack in such studies for hybrid fiber reinforced concrete. In the current study, an experimental investigation of evaluating mode II fracture toughness ($K_{IIc}$) of hybrid fiber embedded in high strength concrete matrix has been reported. Three different types of fibers; namely steel (S), glass (G), and polypropylene (PP) fibers were mixed together in four hybridization patterns (S/G), (S/PP), (G/PP), (S/G/PP) with constant cumulative volume fraction ($V_f$) of 1.5 %. The concrete matrix properties were kept the same for all hybrid FRC patterns. In an attempt to estimate a fairly accepted value of fracture toughness $K_{IIc}$, four testing geometries and loading types are employed in this investigation. Three different ratios of notch depth to specimen width (a/w) 0.3, 0.4, and 0.5 were implemented in this study. Mode II fracture toughness of concrete $K_{IIc}$ was found to decrease with the increment of a/w ratio for all concretes and test geometries. Mode II fracture toughness $K_{IIc}$ was sensitive to the hybridization patterns of fiber. The (S/PP) hybridization pattern showed higher values than all other patterns, while the (S/G/PP) showed insignificant enhancement on mode II fracture toughness ($K_{IIc}$). The four point shear test set up reflected the lowest values of mode II fracture toughness $K_{IIc}$ of concrete. The non damage defect concept proved that, double edge notch prism test setup is the most reliable test to measure pure mode II of concrete.

브레이드 투루젼법에 의한 콘크리트 구조물용 하이브리드 섬유강화 복합재료 리바 개발 (Development of Hybrid Fiber Reinforced Plastics Rebar for Concrete Structure by the Braidtrusion Process)

  • 최명선;한길영;이동기;심재기
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.199-205
    • /
    • 2001
  • This paper describes the design methodology, manufacturing process, rebar tensile and bending properties. Braidtrusion is a direct Composite fabrication technique utilizing an in-line braiding and pultrusion process. The produced Composite rebar exhibits ductile stress-strain behavior similar to that of conventional steel bar. Various rebar diameters ranging from modeling scale(3m) to full-scale prototype of 9.5mm have been produced Glass Fiber Reinforced Plastics(GFRP) rebar were successfully fabricated at $\phi$8.5mm and $\phi$9.5mm nominal diameters of soild and hollow type using a braidtrusion process. Tensile and bending specimens were tested and compared with behavior of stress-strain of GFRP rebar and steel bar.

  • PDF

아리미드섬유와 PET섬유시트로 보강한 철근콘크리트 기둥의 구조성능평가 (Structural Performance Evaluation of Reinforced Concrete Column Reinforced with Aramid Fibers and PET Fibers )

  • 김동환;조민수;최진형;조우래;김길희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권1호
    • /
    • pp.78-85
    • /
    • 2023
  • 이 연구는 하이브리드 섬유시트를 이용하여 보강된 철근콘크리트 기둥의 구조성능평가에 관한 연구이다. 내진보강 공법은 보강이 필요한 노후 콘크리트 구조물에 아라미드섬유와 PET섬유를 일축으로 배열하여 직조한 하이브리드 섬유시트를 에폭시로 함침하고, 이를 구조물에 부착시켜 보강 구조물의 내하력을 증진시키는데 그 목적이 있다. 특히, 강재보다 가벼운 섬유를 사용함으로써 얻어지는 재료의 경량화뿐만 아니라, 사용된 섬유 중 저강도 고인성의 섬유요소가 고강도 저인성 섬유요소의 취성적 파괴를 지연시켜 기존의 섬유보강 공법과 비교해 안전성 측면에서 우수하다. 연구는 구조실험과 그 결과에 대한 구조성능평가로 진행되었다. 총 4개의 실험체는 하이브리드 보강방법 및 파괴모드를 주요변수로 계획하였으며, 실험체 크기 및 가력조건 등은 기존연구에서 수행한 실험결과와 비교가 가능하도록 계획하였다. 실험체의 구조성능은 에너지소산능력, 연성평가등을 사용하여 평가하였다. 다음과 같은 분석을 통하여 하이브리드 섬유시트의 보강하였을 때 우수한 성능 결과를 보일 수 있다는 결론은 얻었다.

Stiffened orthotropic corner supported hypar shells: Effect of stiffener location, rise/span ratio and fiber orientaton on vibration behavior

  • Darilmaz, Kutlu
    • Steel and Composite Structures
    • /
    • 제12권4호
    • /
    • pp.275-289
    • /
    • 2012
  • In this paper the influence of stiffener location, rise/span ratio and fibre orientation on vibration behavior of corner supported hypar shells is studied by using a four-node hybrid stress finite element. The formulation of the element is based on Hellinger-Reissner variational principle. The element is developed by combining a hybrid plane stress element and a hybrid plate element. Benchmark problems are solved to validate the approach and free vibration response of stiffened orthotropic hypar shells is studied both with respect to fundamental frequency and mode shapes by varying the location of stiffeners, rise/span ratio and fiber orientation.

Static and fatigue performance of stud shear connector in steel fiber reinforced concrete

  • Xu, Chen;Su, Qingtian;Masuya, Hiroshi
    • Steel and Composite Structures
    • /
    • 제24권4호
    • /
    • pp.467-479
    • /
    • 2017
  • The stud is one of the most frequently used shear connectors which are important to the steel-concrete composite action. The static and fatigue behavior of stud in the steel fiber reinforced concrete (SFRC) were particularly concerned in this study through the push-out tests and analysis. It was for the purpose of investigating and explaining a tendency proposed by the current existing researches that the SFRC may ameliorate the shear connector's mechanical performance, and thus contributing to the corresponding design practice. There were 20 test specimens in the tests and 8 models in the analysis. According to the test and analysis results, the SFRC had an obvious effect of restraining the concrete damage and improving the stud static performance when the compressive strength of the host concrete was relatively low. As to the fatigue aspect, the steel fibers in concrete also tended to improve the stud fatigue life, and the favorable tensile performance of SFRC may be the main reason. But such effect was found to vary with the fatigue load range. Moreover, the static and fatigue test results were compared with several design codes. Particularly, the fatigue life estimation of Eurocode 4 appeared to be less conservative than that of AASHTO, and to have higher safety redundancy than that of JSCE hybrid structure guideline.

하이브리드 강섬유로 보강된 UHPC의 파괴거동 (Fracture Behavior of UHPC Reinforced with Hybrid Steel Fibers)

  • 임우영;홍성걸
    • 콘크리트학회논문집
    • /
    • 제28권2호
    • /
    • pp.223-234
    • /
    • 2016
  • 이 연구에서는 노치 도입 인장시편을 사용하여 직접인장강도 실험을 통해 UHPC의 파괴거동을 살펴보고, 강섬유 혼입률에 따른 UHPC의 초기균열강도와 인장강도를 제안하였다. 실험결과 UHPC와 초기균열강도와 인장강도, 그리고 파괴에너지 등은 강섬유 혼입률이 증가할수록 증가하는 것으로 나타났다. 균열선단에서의 응집응력은 Barenblatt의 가정을 사용하여 결정되었으며, 이를 토대로 변형경화 현상이 발생하는 강섬유 혼입률이 1% 이상인 UHPC의 최대응집응력을 예측할 수 있는 간편식을 제안하였다. 인장강도는 강섬유 혼입률과 압축강도의 함수로 제안되었으며, 파괴에너지는 인장강도의 함수로 제안되었다. 제안된 간편식들은 실험값과 비교적 잘 일치하였으며, 향후 압축강도가 140~170 MPa이고, 강섬유 혼입률이 2% 이하인 UHPC에 적용가능 할 것으로 판단된다.

Estimating properties of reactive powder concrete containing hybrid fibers using UPV

  • Nematzadeh, Mahdi;Poorhosein, Reza
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.491-502
    • /
    • 2017
  • In this research, the application of ultrasonic pulse velocity (UPV) test as a nondestructive method for estimating some of the mechanical and dynamic properties of reactive powder concrete (RPC) containing steel and polyvinyl alcohol (PVA) fibers, as well as their combination was explored. In doing so, ten different mix designs were prepared in 19 experimental groups of specimens containing three different volume contents of steel fibers (i.e., 1, 2, and 3 %) and PVA fibers (i.e., 0.25, 0.5, and 0.75 %), as well as hybrid fibers (i.e., 0.25-0.75, 0.5-0.5, and 0.75-0.25 %). The specimens in these groups were prepared under the two curing regimes of normal and heat treatment. Moreover, the UPV test results were employed to estimate the compressive strength, dynamic modulus, shear modulus, and Poisson's ratio of the RPC concrete and to investigate the quality level of the used concrete. At the end, the effect of the specimen shape and in fact the measuring distance length on the UPV results was explored. The results of this research suggest that the steel fiber-containing RPC specimens demonstrate the highest level of ultrasonic pulse velocity as well as the highest values of the mechanical and dynamic properties. Moreover, heat treatment has a positive effect on the density, UPV, dynamic modulus, Poisson's ratio, and compressive strength of the RPC specimens, whereas it leads to a negligible increase or decrease in the shear modulus and static modulus of elasticity. Furthermore, the specimen shape affects the UPV of fiber-lacking specimens while negligibly affecting that of fiber-reinforced specimens.