• Title/Summary/Keyword: hybrid riser

Search Result 8, Processing Time 0.032 seconds

CFD simulation of vortex-induced vibration of free-standing hybrid riser

  • Cao, Yi;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.7 no.3
    • /
    • pp.195-223
    • /
    • 2017
  • This paper presents 3D numerical simulations of a Free Standing Hybrid Riser under Vortex Induced Vibration, with prescribed motion on the top to replace the motion of the buoyancy can. The model is calculated using a fully implicit discretization scheme. The flow field around the riser is computed by solving the Navier-Stokes equations numerically. The fluid domain is discretized using the overset grid approach. Grid points in near-wall regions of riser are of high resolution, while far field flow is in relatively coarse grid. Fluid-structure interaction is accomplished by communication between fluid solver and riser motion solver. Simulation is based on previous experimental data. Two cases are studied with different current speeds, where the motion of the buoyancy can is approximated to a 'banana' shape. A fully three-dimensional CFD approach for VIV simulation for a top side moving Riser has been presented. This paper also presents a simulation of a riser connected to a platform under harmonic regular waves.

Sensitivity Study on SCR Design for Spread-Moored FPSO in West Africa

  • Yoo, Kwang-Kyu;Joo, Youngseok
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.111-120
    • /
    • 2017
  • It is generally acknowledged that the Steel Catenary Riser (SCR) is the most cost-effective riser type for deep-water offshore fields among various risers, including the SCR, flexible riser, and hybrid riser. However, in West Africa, the SCR type may not be suitable for FPSO systems because the large vertical motion of the floater brings about a considerable riser dynamic response. In this paper, an SCR system is designed for the FPSO in the West African field, where the use of a hybrid riser has been preferred. The proposed SCR configuration fulfills the design criteria of the API, such as the strength check and fatigue life. Moreover, a sensitivity analysis is also carried out to improve the certainty in the SCR design of a deep-water FPSO. The parameters affecting the strength and fatigue performance of the SCR are considered.

Preliminary optimal configuration on free standing hybrid riser

  • Kim, Kyoung-Su;Choi, Han-Suk;Kim, Kyung Sung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.250-258
    • /
    • 2018
  • Free Standing Hybrid Riser (FSHR) is comprised of vertical steel risers and Flexible Jumpers (FJ). They are jointly connected to a submerged Buoyancy Can (BC). There are several factors that have influence on the behavior of FSHR such as the span distance between an offshore platform and a foundation, BC up-lift force, BC submerged location and FJ length. An optimization method through a parametric study is presented. Firstly, descriptions for the overall arrangement and characteristics of FSHR are introduced. Secondly, a flowchart for optimization of FSHR is suggested. Following that, it is described how to select reasonable ranges for a parametric study and determine each of optimal configuration options. Lastly, numerical analysis based on this procedure is performed through a case study. In conclusion, the relation among those parameters is analyzed and non-dimensional parametric ranges on optimal arrangements are suggested. Additionally, strength analysis is performed with variation in the configuration.

A Study on the Effect of Insulating Sleeve on Solidification Characteristics of A356 Aluminum Alloy (절연슬리브가 A356 알루미늄 합금의 응고과정에 미치는 영향에 대한 연구)

  • Oh, Min-Joo;Yoo, Seung-Mok;Cho, In-Sung;Kim, Young-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.31 no.4
    • /
    • pp.205-211
    • /
    • 2011
  • Al-Si alloys have been steadily used as a potential material for the achievement of an efficient weight reduction in the automobile and aerospace industries due to its excellent castability and high strength-to-weight ratio. In this study, riser effect and mechanical properties were investigated according to the size of the sleeve. In addition, the effects of riser size on mechanical properties of castings were investigated. On the other hand flow and solidification process were simulated with a hybrid FDM/FEM package named ZCast. As a result, results of simulation and experiments were comparable regarding to the yield strength, tensile strength, elongation and hardness of casting. It proves the reliability of the simulation. It is expected that the proper size of riser can improve the recycling rate of metallic materials and reduce the cost of casting.

Ventilation Performance According to Outdoor and Operating Conditions of the Vertical Exhaust Duct System in High Riser Public Houses (초고층 공동주택의 입상덕트 환기시스템에서 외기조건과 작동조건에 따른 환기성능평가)

  • Kim, Young-Bae;Kim, Jae-Hong;Sung, Jae-Yong;Lee, Myeong-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.139-146
    • /
    • 2011
  • The ventilation performance of a vertical exhaust duct system in the high riser public house has been evaluated by a commercial software, Fluid Flow, which solves pressure losses through the duct system including bathroom fans and a hybrid roof fan. During the numerical simulations, outdoor wind condition and stack effects in summer and winter were considered as well as the operating conditions of a basement damper and the roof fan. The results show that the bathroom ventilation in summer is the most unsatisfactory. The opening of the basement damper has a problem that the polluted air in the lower floors is exhausted to the underground parking lot, not to the rooftop. If the basement damper is closed, the exhaust flow rate in the lower floors is not sufficient due to the strong flow resistance in the long vertical duct even though the roof fan is under operating.

Status and Efficiency of Wastewater Sea Outfalls in Korea

  • Kwon Seok-Jae;Seo Il-Won;Lee Joong-Woo;Kim Young-Do
    • Journal of Navigation and Port Research
    • /
    • v.29 no.9
    • /
    • pp.783-788
    • /
    • 2005
  • This study provided the status and efficiency of the domestic wastewater sea outfalls based on the previous numerical and experimental studies for the analysis of the buoyant discharges from Rosette diffuser in shallow water. The VISJET model and the hybrid model proposed by Kim (2002) can be proper models for the domestic sea outfalls. The experimental results show that the merging height for MBR and MIR depends on the riser diameter and spacing between risers, and the bending characteristics of the buoyant discharges in still ambient water have significant impacts on the dilution. The current wastewater outfall systems in Korea are not effective for the environmental aspect due to the low discharge water depth. The strategies to reduce the contamination near the domestic wastewater outfalls were found to require the sufficient discharge water depth, proper diffuser location considering the tidal currents, enough riser diameter, and sufficient spacing between risers.

Transient effects of tendon disconnection on the survivability of a TLP in moderate-strength hurricane conditions

  • Kim, Moo-Hyun;Zhang, Zhi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.13-19
    • /
    • 2009
  • The primary objective of this paper is to investigate the dynamic stability and survivability of a four-column classic TLP (tension-leg platform) under less-than-extreme storm conditions where one or more tendons have been lost due to damage or disconnect. The transient responses of the platform and tendon tensions at the moment of disconnection are particularly underscored. The numerical simulation is based on the BE-FE hybrid hull-tendon-riser coupled dynamic analysis in time domain. Compared to the common industry practice of checking the system without a failed tendon in the beginning, the maximum tension on the neighboring tendon can be significantly increased at the moment of disconnection due to the snap-like transient effects, which can lead to unexpected failure of the total system. It is also found that the transient effects can be reduced with the presence of TTRs (top-tensioned risers) with pneumatic tensioners. It is also seen that the TLP cannot survive in the 100-yr hurricane condition after losing one tendon.

Free vibration analysis of large sag catenary with application to catenary jumper

  • Klaycham, Karun;Nguantud, Panisara;Athisakul, Chainarong;Chucheepsakul, Somchai
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.67-86
    • /
    • 2020
  • The main goal of this study is to investigate the free vibration analysis of a large sag catenary with application to the jumper in hybrid riser system. The equation of motion is derived by using the variational method based on the virtual work principle. The finite element method is applied to evaluate the numerical solutions. The large sag catenary is utilized as an initial configuration for vibration analysis. The nonlinearity due to the large sag curvature of static configuration is taken into account in the element stiffness matrix. The natural frequencies of large sag catenary and their corresponding mode shapes are determined by solving the eigenvalue problem. The numerical examples of a large sag catenary jumpers are presented. The influences of bending rigidity and large sag shape on the free vibration behaviors of the catenary jumper are provided. The results indicate that the increase in sag reduces the jumper natural frequencies. The corresponding mode shapes of the jumper with large sag catenary shape are comprised of normal and tangential displacements. The large sag curvature including in the element stiffness matrix increases the natural frequency especially for a case of very large sag shape. Mostly, the mode shapes of jumper are dominated by the normal displacement, however, the tangential displacement significantly occurs around the lowest point of sag. The increase in degree of inclination of the catenary tends to increase the natural frequencies.