• Title/Summary/Keyword: hybrid reinforcement

Search Result 186, Processing Time 0.03 seconds

An Experimental Study on RC Columns Using High Performance Fiber Reinforced Cement Composites (고인성 섬유보강 시멘트 복합체를 사용한 콘크리트 기둥의 실험적 연구)

  • Hwang Sun-Kyoung;Yun Hyun-Do;Han Byung-Chan;Park Wan-Shin;Jeon Esther;Yang Il-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.631-634
    • /
    • 2004
  • An experimental investigation on the strength and behaviour of reinforced concrete columns using high performance fiber reinforced cement composites has been carried out. The columns were subjected to monotonic axial compression until failure. The variables in this study are the combination ratio of steel cord(SCI) and polypropylene(PP), and the volumetric ratio of transverse reinforcement Test results showed that the fibers, when used in a hybrid form, could result in superior composite performance compared to their individual fiber reinforced cement composites.

  • PDF

Analysis of steel-GFRP reinforced concrete circular columns

  • Shraideh, M.S.;Aboutaha, R.S.
    • Computers and Concrete
    • /
    • v.11 no.4
    • /
    • pp.351-364
    • /
    • 2013
  • This paper presents results from an analytical investigation of the behavior of steel reinforced concrete circular column sections with additional Glass Fiber Reinforced Polymers (GFRP) bars. The primary application of this composite section is to relocate the plastic hinge region from the column-footing joint where repair is difficult and expensive. Mainly, the study focuses on the development of the full nominal moment-axial load (M-P) interaction diagrams for hybrid concrete sections, reinforced with steel bars as primary reinforcement, and GFRP as auxiliary control bars. A large parametric study of circular steel reinforced concrete members were undertaken using a purpose-built MATLAB(c) code. The parameters considered were amount, location, dimensions and mechanical properties of steel, GFRP and concrete. The results indicate that the plastic hinge was indeed shifted to a less critical and congested region, thus facilitating cost-effective repair. Moreover, the reinforced concrete steel-GFRP section exhibited high strength and good ductility.

Hybrid of Reinforcement Learning and Bayesian Inference for Effective Target Tracking of Reactive Agents (반응형 에이전트의 효과적인 물체 추적을 위한 베이지 안 추론과 강화학습의 결합)

  • 민현정;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.94-96
    • /
    • 2004
  • 에이전트의 '물체 따라가기'는 전통적으로 자동운전이나 가이드 등의 다양한 서비스를 제공할 수 있는 기본적인 기능이다. 여러 가지 물체가 있는 환경에서 '물체 따라가기'를 하기 위해서는 목적하는 대상이 어디에 있는지 찾을 수 있어야 하며, 실제 환경에는 사람이나 차와 같이 움직이는 물체들이 존재하기 때문에 다른 물체들을 피할 수 있어야 한다. 그런데 에이전트의 최적화된 피하기 행동은 장애물의 모양과 크기에 따라 다르게 생성될 수 있다. 본 논문에서는 다양한 모양과 크기의 장애물이 있는 환경에서 최적의 피하기 행동을 생성하면서 물체를 추적하기 위해 반응형 에이전트의 행동선택을 강화학습 한다. 여기에서 정확하게 상태를 인식하기 위하여 상태를 추론하고 목표물과 일정거리를 유지하기 위해 베이지안 추론을 이용한다 베이지안 추론은 센서정보를 이용해 확률 테이블을 생성하고 가장 유력한 상황을 추론하는데 적합한 방법이고, 강화학습은 실시간으로 장애물 종류에 따른 상태에서 최적화된 행동을 생성하도록 평가함수를 제공하기 때문에 베이지안 추론과 강화학습의 결합모델로 장애물에 따른 최적의 피하기 행동을 생성할 수 있다. Webot을 이용한 시뮬레이션을 통하여 다양한 물체가 존재하는 환경에서 목적하는 대상을 따라가면서 이종의 움직이는 장애물을 최적화된 방법으로 피할 수 있음을 확인하였다.

  • PDF

A Study on Optimal Design of Hybrid System of New and Renewable Energy-Linked Microgrid (신재생에너지 연계형 마이크로그리드의 하이브리드시스템 최적 설계 연구)

  • Lee, Jae-Kyung;Han, Yong-Chan;Kwon, Sung-Gi;Park, Gye-Choon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.631-638
    • /
    • 2022
  • Microgrid, which enables the production and consumption of electricity to be done independently on a small scale, has been studied on one of the solutions of reinforcement for flexibility of electronic system. This study examined the application effect of new microgrid by applying hybrid battery in electric power storage device. We designed the system to highlight the advantage of each battery and complement the disadvantage by using hybrid system with Lithium-ion battery and interval Redox flow battery. It runs with lithium-ion battery during the initial startup while the Redox flow battery operates for a long time at the end of excessive period, and it enables a discharge of Lithium-ion and Redox flow battery at the same time when the load has a large output. We chose Maldives as a subject of this study for organizing and optimizing independent microgrid. Maldives is the country to accomplish 100% domestic electricity in South Asia, but the whole electric power is supplied through diesel generation imported fossil fuel. We organized and optimized microgrid for energy independence on Malahini island to solve Maldives energy cost problem and global energy environment matters. We analyzed the daily power supply and accumulated the power supply from September 18, 2018~February 11, 2019. The accumulated power supply was about 120.4 MWh and the daily power supply was about 800~1000 kWh. Based on the collected information, we divided the cases into three models which are only diesel generator, solar generator as well as diesel generator, and solar+ESS+diesel generator. We analyzed the amount of oil consumption compared to the cost of construction and power output. The result showed that solar+ESS+diesel generator was most economically feasible. As well, we obtained that our considering hybrid battery system reduced the fuel consumption for diesel power generation about 10~15%.

Recommendations of Environmental Reduction Factor of FRP Rebar for Durability Design of Concrete Structure (콘크리트 보강용 FRP 보강근의 내구성 설계를 위한 환경영향계수의 제안)

  • Park Chan-Gi;Won Jong-Pil;Kang Joo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.529-539
    • /
    • 2004
  • The corrosion of steel rebars has been the major cause of reinforced concrete deterioration. FRP(Fiber-reinforced polymer) rebar has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. However, FRP rebar is prone to deteriorate due to other degradation mechanisms than those for steel. The high alkalinity of concrete, for instance, is a possible degradation source. Therefore, the USA, Japan, Canada, UK. etc are using environmental reduction factor. Although difference design guidelines were drawn in many, including USA, Japan, Canada, UK etc, recommendations and coefficients that could take into account the long-term behavior of FRP reinforcement were not well defined. This study focuses on recommendation of environmental reduction factor of FRP rebar. Environment reduction factor were decided using durability test result. FRP rebars were subjected to twelve type of exposure conditions including alkaline solution, acid solution, salt solution and deionized water etc. The water absorption behavior was observed by means of simple gravimetric measurements and durability properties were investigated by performing tensile, compressive and short beam tests. Based on the experimental result, environmental reduction factor of hybrid FRP rebar(A), and (C) and CFRP rebar was decided as 0.85. Also, hybrid FRP rebar(B) and GFRP rebar were decided as 0.7 for the environmental reduction factor

The Properties of Durability and Strength of Fiber-Reinforced Polymer-Modified Mortars Using Eco-Friendly UM Resin (친환경 UM수지를 사용한 섬유보강 폴리머 시멘트 모르타르의 내구성 및 강도 특성)

  • Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Jin-Sup
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.313-320
    • /
    • 2013
  • In this study, performance of fiber-reinforced polymer-modified mortar was studied for the development of eco-friendly materials for high performance repair and reinforcement. The general cement mortar and eco-friendly UM resin was mixed with a certain percentage for increased durability. To increase the strength of the polymer-modified mortar, PVA fiber, steel fiber and hybrid fiber were added at a constant rate. Hybrid fiber is contains the same percentage of PVA fiber and steel fiber. In order to determine the strength properties of fiber-reinforced polymer-modified mortar, the compressive strength test, the splitting tensile strength test and the flexural strength test were performed. And, in order to determine the durability properties of fiber-reinforced polymer-modified mortar, water absorption test and chemical resistance test were performed. From the experimental results, polymer-modified mortar using UM resin was improved durability. And the tensile strength and flexural strength increased, which were the vulnerability of fiber reinforced polymer-modified mortar. From this study, fiber-reinforced polymer-modified mortar using eco-friendly UM resin can be used to repair and reinforcement for the external exposure of concrete structures to improve the durability.

Effect of Fiber Type and Combination on the Reinforcement of Heat Polymerized Denture Base Resin (섬유의 종류와 조합이 열중합 의치상 레진의 강화에 미치는 영향)

  • Yu, Sang-Hui;Kim, Young-Im
    • Journal of dental hygiene science
    • /
    • v.10 no.6
    • /
    • pp.445-450
    • /
    • 2010
  • The aim of this study was to evaluate the effect according to the fiber type and combination on the reinforcement of heat-polymerized denture base resin. The heat-polymerized resin(Vertex RS, Dentimax, Netherlands) was used in this study. Glass fiber(GL; ER 270FW, Hankuk Fiber Glass, Korea), polyaromatic polyamide fiber(PA; aramid; Kevlar-49, Dupont, U.S.A.) and ultra high molecular weight polyethylene fiber(PE, polyethylene; P.E, Dong Yang Rope, Korea) were used to reinforce the denture base resin specimens. The final size of test specimen was $64mm{\times}10mm{\times}3.3mm$. The specimens of each group were stored in distilled water at $37^{\circ}C$ for 50 hours before measurement. The flexural strength and flexural modulus were measured by an universal testing machine(Z020, Zwick, Germany) at a crosshead speed of 5 mm/min in a three-point bending mode. In this study, all fibers showed reinforcing effects on denture base resin(p<0.05). In terms of flexural strength and flexural modulus, glass fiber 5.3 vol.% showed most effective reinforcing effect on heat polymerized denture base resin. For flexural modulus, PA/GL was the highest in denture base resin specimen for hybrid FRC using two combination (p<0.05). Glass fiber 5.3 vol.% and PA/GL are considered to be applied effectively in reinforcing the heat polymerized denture base resin.

A Study on the Preparation and Mechanical Properties of Hybrid Composites Reinforced Waste FRP and Urethane Foam (폐 FRP/Urethane Foam 충진 혼성복합재의 제조 및 기계적 물성에 관한 연구)

  • 황택성;신경섭;박진원
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.564-570
    • /
    • 2000
  • The waste FRP occured in the fabrication of SMC (sheet molding compound) bathtubs and the waste polyurethane foam occured in electronic manufacture and waste insulator were applied as a soundproof and light weight pannel in the waste FRP unsaturated polyester matrix resin composites to recycle. The effect of filler contents on the mechanical properties and interfacial phenomena of the filler and matrix on the composites was evaluated. The tensile strength of composites reached its maximum value of 82.34 MPa when the filler content was 70 wt%, and the more content of reinforcement is increased, the more tensile modulus was decreased. The flexural strength and modulus of composites, reinforced 70 wt% with filler content, were dominant compared to the other samples to 72.5 MPa, 958.4 MPa respectively. When composite of reinforced 70 wt% with filler content, it was confirmed that pull out phenomena and cracks did not occur in the interface of reinforcement and matrix resin through the SEM observation. Also, waste FRP and urethane foam were dispersed well into matrix resin as filler.

  • PDF

Evaluation on Flexural Performance of Steel Plate Reinforced GLT Beams (강판 보강 집성재 보의 휨성능 평가 연구)

  • Park, Keum-Sung;Lee, Sang-Sup;Kwak, Myong-Keun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.39-49
    • /
    • 2020
  • In this study, we will develop a hybrid cross-sectional shape of steel inserted type glued-laminated timber that can improve the strength of structural glued-laminated timber and maximize the ductility by using steel plate with excellent tensile and deformation ability. A total of three specimens were fabricated and the flexural performance test was carried out to evaluate the structural performance of the steel inserted type glued-laminated timber. In order to compare the effect of steel inserted glued-laminated timber, one structural glued-laminated timber test specimen composed of pure wood was manufactured. In addition, in order to evaluate the adhesion performance of the steel inserted, one each of a screw joint test specimen and a polyurethane joint test specimen was prepared. As a result, all the specimens showed the initial crack in the finger joint near the force point. This has been shown to be a cause of crack diffusion and strength degradation. The use of finger joints in the maximum moment section is considered to affect the strength and ductility of the glued-laminated timber beam. Polyurethane-adhesive steel inserted glued-laminated timber showed fully-composite behavior with little horizontal separation between the steel plate and glued-laminated timber until the maximum load was reached. This method has been shown to exhibit sufficient retention bending performance.

Development of Ship Plate Member Design System Reinforced by Doubler Plate Subjected to Biaxial In-plane Compressive Load (양축 면내 압축하중 하의 이중판보강 선박판부재의 설계시스템 구축)

  • Ham, Juh-Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.294-302
    • /
    • 2016
  • Because of the importance of steel material saving and rational ship structural design due to the rapid increase in steel prices, a ship structural design system was developed for plate members reinforced by doubler plates subjected to biaxial in-plane compressive loads. This paper mainly emphasizes the design system improvement and upgrade according to the change in the in-plane loading condition of the doubler plate from the single load discussed in a previous paper to the biaxial in-plane compressive load discussed in this paper. A direct design process by a structural designer was added to this developed optimized system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. As the second stage of preliminary steps of doubler design system development, design formulas subjected to these biaxial loads used in the doubler plate design system were suggested. Based on the introduction of influence coefficients $K_t_c$, $K_t_d$, $K_b_d$ and $K_a_d$ based on the variations in the doubler length, breadth, doubler thickness, and average corrosion thickness of the main plate reinforced by the doubler plate, respectively, the design formulas for the equivalent plate thickness of the main plate reinforced by the doubler plate were also developed, and a hybrid design system using these formulas was suggested for the doubler plate of a ship structure subjected to a biaxial in-plane compressive load. Using this developed design system for a main plate reinforced by a doubler plate was expected to result in a more rational reinforced doubler plate design considering the efficient reinforcement of ship plate members subjected to these biaxial loads. Additionally, a more detail structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for a plate member reinforced by a doubler plate.