• Title/Summary/Keyword: hybrid reasoning

Search Result 74, Processing Time 0.028 seconds

Design and Implementation of a Hybrid Spatial Reasoning Algorithm (혼합 공간 추론 알고리즘의 설계 및 구현)

  • Nam, Sangha;Kim, Incheol
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.601-608
    • /
    • 2015
  • In order to answer questions successfully on behalf of the human contestant in DeepQA environments such as 'Jeopardy!', the American quiz show, the computer needs to have the capability of fast temporal and spatial reasoning on a large-scale commonsense knowledge base. In this paper, we present a hybrid spatial reasoning algorithm, among various efficient spatial reasoning methods, for handling directional and topological relations. Our algorithm not only improves the query processing time while reducing unnecessary reasoning calculation, but also effectively deals with the change of spatial knowledge base, as it takes a hybrid method that combines forward and backward reasoning. Through experiments performed on the sample spatial knowledge base with the hybrid spatial reasoner of our algorithm, we demonstrated the high performance of our hybrid spatial reasoning algorithm.

Bankruptcy predictions for Korea medium-sized firms using neural networks and case based reasoning

  • Han, Ingoo;Park, Cheolsoo;Kim, Chulhong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.203-206
    • /
    • 1996
  • Prediction of firm bankruptcy have been extensively studied in accounting, as all stockholders in a firm have a vested interest in monitoring its financial performance. The objective of this paper is to develop the hybrid models for bankruptcy prediction. The proposed hybrid models are two phase. Phase one are (a) DA-assisted neural network, (b) Logit-assisted neural network, and (c) Genetic-assisted neural network. And, phase two are (a) DA-assisted Case based reasoning, and (b) Genetic-assisted Case based reasoning. In the variables selection, We are focusing on three alternative methods - linear discriminant analysis, logit analysis and genetic algorithms - that can be used empirically select predictors for hybrid model in bankruptcy prediction. Empirical results using Korean medium-sized firms data show that hybrid models are very promising neural network models and case based reasoning for bankruptcy prediction in terms of predictive accuracy and adaptability.

  • PDF

Fault Train Construction Based on Shallow Reasoning Strategy (경험기반추론 전략을 이용한 고장트레인 구축)

  • Bae, Yong-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.19-26
    • /
    • 2005
  • There are three reasoning method in fault diagnosis process. The shallow reasoning is based on the experiential knowledge and deep reasoning is based on physical model. Hybrid reasoning is mixing two type reasoning. This study describes about fault train embodiment of screw type air compressor that is used widely in industrial facilities by using various experimental method and shallow reasoning. We investigate macroscopic failure cause of air compressor through naked eye observation and then microscopic failure cause by various experimental method. We composed fault train with fault knowledge based on empirical data and scientific data that is acquired through several experiments. It is possible to analysis system reliability and failure rate with these fault train.

Hybrid Intelligent Web Recommendation Systems Based on Web Data Mining and Case-Based Reasoning

  • Kim, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.366-370
    • /
    • 2003
  • In this research, we suggest a hybrid intelligent Web recommendation systems based on Web data mining and case-based reasoning (CBR). One of the important research topics in the field of Internet business is blending artificial intelligence (AI) techniques with knowledge discovering in database (KDD) or data mining (DM). Data mining is used as an efficient mechanism in reasoning for association knowledge between goods and customers' preference. In the field of data mining, the features, called attributes, are often selected primary for mining the association knowledge between related products. Therefore, most of researches, in the arena of Web data mining, used association rules extraction mechanism. However, association rules extraction mechanism has a potential limitation in flexibility of reasoning. If there are some goods, which were not retrieved by association rules-based reasoning, we can't present more information to customer. To overcome this limitation case, we combined CBR with Web data mining. CBR is one of the AI techniques and used in problems for which it is difficult to solve with logical (association) rules. A Web-log data gathered in real-world Web shopping mall was given to illustrate the quality of the proposed hybrid recommendation mechanism. This Web shopping mall deals with remote-controlled plastic models such as remote-controlled car, yacht, airplane, and helicopter. The experimental results showed that our hybrid recommendation mechanism could reflect both association knowledge and implicit human knowledge extracted from cases in Web databases.

Hybrid Case-based Reasoning and Genetic Algorithms Approach for Customer Classification

  • Kim Kyoung-jae;Ahn Hyunchul
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.209-212
    • /
    • 2005
  • This study proposes hybrid case-based reasoning and genetic algorithms model for customer classification. In this study, vertical and horizontal dimensions of the research data are reduced through integrated feature and instance selection process using genetic algorithms. We applied the proposed model to customer classification model which utilizes customers' demographic characteristics as inputs to predict their buying behavior for the specific product. Experimental results show that the proposed model may improve the classification accuracy and outperform various optimization models of typical CBR system.

Hybrid Case Based Reasoning and Neural Networks Approach for Blowing Control of Basic Oxygen Furnace (전로 취련제어를 위한 신경회로망 및 사례기반추론의 통합 접근 방법)

  • 김종한;박정준;정성원;박진우
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.11a
    • /
    • pp.201-204
    • /
    • 2003
  • A hybrid artificial intelligence approach based on combining case based reasoning and neural networks is presented. The approach is designed to allow for solving blowing control of BOF(basic oxygen furnace), example of which lie at the core of steelmaking process control systems application in the steel industry. According to this hybrid approach, the system, when faced with a new problem, first retrieves similar cases and neural network is used to solve the problem. Experimental Results indicate that combining case based reasoning and neural network offers an efficient approach to solving control and prediction problem

  • PDF

A Hybrid Approach Using Case-based Reasoning and Fuzzy Logic for Corporate Bond Rating

  • Kim, Hyun-jung;Shin, Kyung-shik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.474-483
    • /
    • 2003
  • A number of studies for corporate bond rating classification problems have demonstrated that artificial intelligence approaches such as Case-based reasoning (CBR) can be alternative methodologies to statistical techniques. CBR is a problem solving technique in that the case specific knowledge of past experience is utilized to find a most similar solution to the new problems. To build a successful CBR system to deal with human information processing, the representation of knowledge of each attribute is an important key factor We propose a hybrid approach of using fuzzy sets that describe the approximate phenomena of the real world because it handles inexact knowledge represented by common linguistic terms in a similar way as human reasoning compared to the other existing techniques. Integration of fuzzy sets with CBR is important to develop effective methods for dealing with vague and incomplete knowledge to statistical represent using membership value of fuzzy sets in CBR.

  • PDF

Development of Case-adaptation Algorithm using Genetic Algorithm and Artificial Neural Networks

  • Han, Sang-Min;Yang, Young-Soon
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.3
    • /
    • pp.27-35
    • /
    • 2001
  • In this research, hybrid method with case-based reasoning and rule-based reasoning is applied. Using case-based reasoning, design experts'experience and know-how are effectively represented in order to obtain a proper configuration of midship section in the initial ship design stage. Since there is not sufficient domain knowledge available to us, traditional case-adaptation algorithms cannot be applied to our problem, i.e., creating the configuration of midship section. Thus, new case-adaptation algorithms not requiring any domain knowledge are developed antral applied to our problem. Using the knowledge representation of DnV rules, rule-based reasoning can perform deductive inference in order to obtain the scantling of midship section efficiently. The results from the case-based reasoning and the rule-based reasoning are examined by comparing the results with various conventional methods. And the reasonability of our results is verified by comparing the results wish actual values from parent ship.

  • PDF

A Case-Based Reasoning Method Improving Real-Time Computational Performances: Application to Diagnose for Heart Disease (대용량 데이터를 위한 사례기반 추론기법의 실시간 처리속도 개선방안에 대한 연구: 심장병 예측을 중심으로)

  • Park, Yoon-Joo
    • Information Systems Review
    • /
    • v.16 no.1
    • /
    • pp.37-50
    • /
    • 2014
  • Conventional case-based reasoning (CBR) does not perform efficiently for high volume dataset because of case-retrieval time. In order to overcome this problem, some previous researches suggest clustering a case-base into several small groups, and retrieve neighbors within a corresponding group to a target case. However, this approach generally produces less accurate predictive performances than the conventional CBR. This paper suggests a new hybrid case-based reasoning method which dynamically composing a searching pool for each target case. This method is applied to diagnose for the heart disease dataset. The results show that the suggested hybrid method produces statistically the same level of predictive performances with using significantly less computational cost than the CBR method and also outperforms the basic clustering-CBR (C-CBR) method.

Study on Inference and Search for Development of Diagnostic Ontology in Oriental Medicine (한의진단 Ontology 구축을 위한 추론과 탐색에 관한 연구)

  • Park, Jong-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.745-750
    • /
    • 2009
  • The goal of this study is to examine on reasoning and search for construction of diagnosis ontology as a knowledge base of diagnosis expert system in oriental medicine. Expert system is a field of artificial intelligence. It is a system to acquire information with diverse reasoning methods after putting expert's knowledge in computer systematically. A typical model of expert system consists of knowledge base and reasoning & explanatory structure offering conclusion with the knowledge. To apply ontology as knowledge base to expert system practically, consideration on reasoning and search should be together. Therefore, this study compared and examined reasoning, search with diagnosis process in oriental medicine. Reasoning is divided into Rule-based reasoning and Case-based reasoning. The former is divided into Forward chaining and Backward chaining. Because of characteristics of diagnosis, sometimes Forward chaining or backward chaining are required. Therefore, there are a lot of cases that Hybrid chaining is effective. Case-based reasoning is a method to settle a problem in the present by comparing with the past cases. Therefore, it is suitable to diagnosis fields with abundant cases. Search is sorted into Breadth-first search, Depth-first search and Best-first search, which have respectively merits and demerits. To construct diagnosis ontology to be applied to practical expert system, reasoning and search to reflect diagnosis process and characteristics should be considered.