• Title/Summary/Keyword: hybrid priors

Search Result 3, Processing Time 0.019 seconds

Rapid Speaker Adaptation Based on MAPLR with Adaptive Hybrid Priors Estimated from Reference Speakers (참조화자로부터 추정된 적응적 혼성 사전분포를 이용한 MAPLR 고속 화자적응)

  • Song, Young-Rok;Kim, Hyung-Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.315-323
    • /
    • 2011
  • This paper proposes two methods of estimating prior distribution to improve the performance of rapid speaker adaptation based on maximum a posteriori linear regression (MAPLR). In general, prior distribution of the transformation matrix used in MAPLR adaptation is estimated from all of the training speakers who are employed to construct the speaker-independent model, and it is applied identically to all new speakers. In this paper, we propose a method in which prior distribution is estimated from a group of reference speakers, selected using adaptation data, so that the acoustic characteristics of the selected reference speakers may be similar to that of the new speaker. Additionally, in MAPLR adaptation with block-diagonal transformation matrix, we propose a method in which the mean matrix and covariance matrix of prior distribution are estimated from two groups of transformation matrices obtained from the same training speakers, respectively. To evaluate the performance of the proposed methods, we examine word accuracy according to the number of adaptation words in the isolated word recognition task. Experimental results show that, for very limited adaptation data, statistically significant performance improvement is obtained in comparison with the conventional MAPLR adaptation.

Bayesian estimation for the exponential distribution based on generalized multiply Type-II hybrid censoring

  • Jeon, Young Eun;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.4
    • /
    • pp.413-430
    • /
    • 2020
  • The multiply Type-II hybrid censoring scheme is disadvantaged by an experiment time that is too long. To overcome this limitation, we propose a generalized multiply Type-II hybrid censoring scheme. Some estimators of the scale parameter of the exponential distribution are derived under a generalized multiply Type-II hybrid censoring scheme. First, the maximum likelihood estimator of the scale parameter of the exponential distribution is obtained under the proposed censoring scheme. Second, we obtain the Bayes estimators under different loss functions with a noninformative prior and an informative prior. We approximate the Bayes estimators by Lindleys approximation and the Tierney-Kadane method since the posterior distributions obtained by the two priors are complicated. In addition, the Bayes estimators are obtained by using the Markov Chain Monte Carlo samples. Finally, all proposed estimators are compared in the sense of the mean squared error through the Monte Carlo simulation and applied to real data.

Analysis of generalized progressive hybrid censored competing risks data

  • Lee, Kyeong-Jun;Lee, Jae-Ik;Park, Chan-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.131-137
    • /
    • 2016
  • In reliability analysis, it is quite common for the failure of any individual or item to be attributable to more than one cause. Moreover, observed data are often censored. Recently, progressive hybrid censoring schemes have become quite popular in life-testing problems and reliability analysis. However, a limitation of the progressive hybrid censoring scheme is that it cannot be applied when few failures occur before time T. Therefore, generalized progressive hybrid censoring schemes have been introduced. In this article, we derive the likelihood inference of the unknown parameters under the assumptions that the lifetime distributions of different causes are independent and exponentially distributed. We obtain the maximum likelihood estimators of the unknown parameters in exact forms. Asymptotic confidence intervals are also proposed. Bayes estimates and credible intervals of the unknown parameters are obtained under the assumption of gamma priors on the unknown parameters. Different methods are compared using Monte Carlo simulations. One real data set is analyzed for illustrative purposes.