• Title/Summary/Keyword: hybrid power source

Search Result 271, Processing Time 0.025 seconds

Single-Phase Hybrid Active Power Filter Using Rotating Reference Frame (회전좌표계를 이용한 단상 하이브리드형 능동 전력필터)

  • Kim Jin-Sun;Kim Young-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.377-386
    • /
    • 2005
  • This paper presents the control algorithm of single-phase hybrid active power filter for the compensation of harmonic current components in nonlinear R-L load with passive active Power filters. To construct two phase system, an imaginary second phase was made. In this proposed method, the new signal which is the delayed through the filtering by the phase-delay property of low-pass filter is used as the secondary phase. Because two-phases have the different phase, the instantaneous calculation of harmonic current is possible. In this paper, a reference voltage is created by multiplying the coefficient k by the compensation current using the rotating reference frame synchronized with the source-frequency, not applying to instantaneous reactive power theory which has been used with the existing fixed reference frames In order to verify the validities of the proposed control methods, experiments are carried out with the prototypes of single-phase hybrid active power filter.

Comparison and Study of Active and Hybrid Power Filters for Compensation of Grid Harmonics

  • Gutierrez, Bryan;Kwak, Sang-Shin
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1541-1550
    • /
    • 2016
  • This paper presents a theoretical analysis and comparisons of active power filter (APF) and hybrid power filter (HPF) systems, given terminal constraints of harmonic compensations in nonlinear loads. Despite numerous publications for the two types of filters, the features and differences between them have not been clearly explained. This paper presents a detailed analysis of the operations of a HPF inverter along with those of passive power filters (PPFs). It also includes their effects on the power factor at the grid. In addition, a theoretical analysis and a systematic comparison between the APF and HPF systems are addressed based on system parameters such as the source voltage, output power, reactive component size, and power factor at the grid terminals. The converter kVA ratings and dc-link voltage requirements for both topologies are considered in the presented comparisons

Optimization of Residential Photovoltaic-Fuel Cell Hybrid System Using HOMER(R) (HOMER를 이용한 가정용 태양광-연료전지 하이브리드시스템의 운전 최적화)

  • Park, Se-Joon;Li, Ying;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.129-133
    • /
    • 2010
  • A hybrid system which is combined several complementary new and renewable power sources, such as photovoltaic, fuel-cell, and wind generator, etc., has been presented in various approaches. For instance, a photovoltaic cannot always generate stable output power with ever-changing weather condition, so it might be co-generated with a wind generator, diesel generator, and some other sources. In this paper, a residential PV-FC hybrid system is suggested as a distribution power source, and its operation is optimized by HOMER$^{(R)}$. As a result, it is the most economic that 5[kW] PV, 1[kW] FC, 4 batteries, 2[kW] electrolyzer, 0.5[kg] $H_2$ tank, 3[kW] converter are applied to the hybrid system.

Adaptive Sliding Mode Control with Enhanced Optimal Reaching Law for Boost Converter Based Hybrid Power Sources in Electric Vehicles

  • Wang, Bin;Wang, Chaohui;Hu, Qiao;Ma, Guangliang;Zhou, Jiahui
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.549-559
    • /
    • 2019
  • This paper proposes an adaptive sliding mode control (ASMC) strategy with an enhanced optimal reaching law (EORL) for the robust current tracking control of the boost converter based hybrid power source (HPS) in an electric vehicle (EV). A conventional ASMC strategy based on state observers and the hysteresis control method is used to realize the current tracking control for the boost converter based HPS. Then a novel enhanced exponential reaching law is proposed to improve the ASMC. Moreover, an enhanced exponential reaching law is optimized by particle swarm optimization. Finally, the adaptive control factor is redesigned based on the EORL. Simulations and experiments are established to validate the ASMC strategy with the EORL. Results show that the ASMC strategy with the EORL has an excellent current tracking control effect for the boost converter based HPS. When compared with the conventional ASMC strategy, the convergence time of the ASMC strategy with the EORL can be effectively improved. In EV applications, the ASMC strategy with the EORL can achieve robust current tracking control of the boost converter based HPS. It can guarantee the active and stable power distribution for boost converter based HPS.

Modeling and Experimental Validation of 5-level Hybrid H-bridge Multilevel Inverter Fed DTC-IM Drive

  • Islam, Md. Didarul;Reza, C.M.F.S.;Mekhilef, Saad
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.574-585
    • /
    • 2015
  • This paper aims to improve the performance of conventional direct torque control (DTC) drives proposed by Takahashi by extending the idea for 5-level inverter. Hybrid cascaded H-bridge topology is used to achieve inverter voltage vector composed of 5-level of voltage. Although DTC is very popular for its simplicity but it suffers from some disadvantages like- high torque ripple and uncontrollable switching frequency. To compensate these shortcomings conventional DTC strategy is modified for five levels voltage source inverter (VSI). Multilevel hysteresis controller for both flux and torque is used. Optimal voltage vector selection from precise lookup table utilizing 12 sector, 9 torque level and 4 flux level is proposed to improve DTC performance. These voltage references are produced utilizing a hybrid cascaded H-bridge multilevel inverter, where inverter each phase can be realized using multiple dc source. Fuel cells, car batteries or ultra-capacitor are normally the choice of required dc source. Simulation results shows that the DTC drive performance is considerably improved in terms of lower torque and flux ripple and less THD. These have been experimentally evaluated and compared with the basic DTC developed by Takahashi.

Design of a Hybrid Controller for the Three-phase Four-leg Voltage-source Inverter with Unbalanced Load

  • Doan, Van-Tuan;Kim, Ki-Young;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.181-189
    • /
    • 2017
  • The three-phase four-leg voltage-source inverter topology is an interesting option for the three-phase four-wire system. With an additional leg, this topology can achieve superior performance under unbalanced and nonlinear load conditions. However, because of the low bandwidth of conventional controllers in high-power inverter applications, the system cannot guarantee a balanced output voltage under the unbalanced load condition. Most of the methods proposed to solve this problem mainly use the multiple synchronous frame method, which requires several controllers and a large amount of computation because of frame transformation. This study proposes a simple hybrid controller that combines proportional-integral (PI) and resonant controllers in the synchronous frame synchronized with the positive-sequence component of the output voltage of the three-phase four-leg inverter. The design procedure for the controller and the theoretical analysis are presented. The performance of the proposed method is verified by the experimental results and compared with that of the conventional PI controller.

New method development for position estimation of underground acoustic source using a passive SONAR system

  • Jarng, Soon-Suck;Lee, Je-Hyeong;Ahn, Heung-Gu;Park, Heun-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.149-152
    • /
    • 1999
  • The aim of the work described in this paper is to develop a complex underground acoustic system which detects and localizes the origin of an underground hammering sound using an array of hydrophones located about loom underground. Three different methods for the sound localization will be presented, a time-delay method, a power-attenuation method and a hybrid method. In the time-delay method, the cross correlation of the signals received from the way of sensors is used to calculate the time delays between those signals. In the power-attenuation method, the powers of the received signals provide a measure of the distances of the source from the sensors. In the hybrid method, both informations of time-delays and power-ratios are coupled together to produce better performance of position estimation. A new acoustic imaging technique has been developed for improving the hybrid method. For each method the sound localization is carried out in three dimensions underground. The minimum distance between the true and estimated origins of the source is 28 m for a search area of radius 250m.

  • PDF

Heating Performance Analysis of Ground-Source Heat Pump (GSHP) System using Hybrid Ground Heat Exchanger (HGHE) (하이브리드 지중열교환기 적용 지열 히트펌프 시스템의 난방 성능 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.3
    • /
    • pp.8-16
    • /
    • 2020
  • This paper presents the heating performance analysis results of a ground-source heat pump (GSHP) system using hybrid ground heat exchanger (HGHE). In this paper, the HGHE refers to the ground heat exchanger (GHE) using both a surface water heat exchanger (SWHE) and a vertical GHE. In order to evaluate the system performance, we installed monitoring sensors for measuring temperatures and power consumption, and then measured operation data with 4 different load burdened ratios of the HGHE. During the entire measurement period, the average heating capacity of the heat pump was 37.3 kW. In addition, the compressor of the heat pump consumed 9.4 kW of power, while the circulating pump of the HGHE used 6.7 kW of power. Therefore, the average heating coefficient of performance (COP) for the heat pump unit was 4.0, while the system including the circulating pump was 2.7. Finally, the parallel use of SWHE and VGHE was beneficial to the system performance; however, further researches are needed to optimize the design data for various load ratios of the HGHE.

Contactless Power Supply for DC Power Service in Hybrid Home Generation System (직류수용가 서비스를 위한 무접점 전원장치)

  • Kang, J.W.;Song, H.K.;Kim, J.H.;Kim, E.S.;Kim, Y.H.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.104-107
    • /
    • 2007
  • Among the alternative energy sources, the solar energy is recognized as an important energy source and its application is increasing. Especially in future, the hybrid solar energy generation system with battery will be widely used as an independent distributed power generation system. In this paper, a solar power hybrid home generation system using a contact-less power supply (CPS) that can transfer an electric power without any mechanical contact by using magnetic coupling instead of the power transfer by directly supplying the DC power to the home electric system is proposed. The proposed system consists of a ZVS boost converter, a half bridge LLC resonant converter and contact-less transformer.

  • PDF

Analysis of Amorphous Carbon Hard Mask and Trench Etching Using Hybrid Coupled Plasma Source

  • Park, Kun-Joo;Lee, Kwang-Min;Kim, Min-Sik;Kim, Kee-Hyun;Lee, Weon-Mook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.74-74
    • /
    • 2009
  • The ArF PR mask was. developed to overcome the limit. of sub 40nm patterning technology with KrF PR. But ArF PR difficult to meet the required PR selectivity by thin PR thickness. So need to the multi-stack mask such as amorphous carbon layer (ACL). Generally capacitively coupled plasma (CCP) etcher difficult to make the high density plasma and inductively coupled plasma (ICP) type etcher is more suitable for multi stack mask etching. Hybrid Coupled Plasma source (HCPs) etcher using the 13.56MHz RF power for ICP source and 2MHz and 27.12MHz for bias power was adopted to improve the process capability and controllability of ion density and energy independently. In the study, the oxide trench which has the multi stack layer process was investigated with the HCPs etcher (iGeminus-600 model DMS Corporation). The results were analyzed by scanning electron microscope (SEM) and it was found that etching characteristic of oxide trench profile depend on the multi-stack mask.

  • PDF