• Title/Summary/Keyword: hybrid power source

Search Result 273, Processing Time 0.041 seconds

Harmonics Compensation by Using an Impedance Source Hybrid Active Power Filter (임피던스 소스 네트워크를 갖는 복합형 능동필터에 의한 고조파 보상)

  • Kim, Jae-Hyun;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.154-156
    • /
    • 2008
  • 본 연구에서는 종전의 전압형 및 전류형 능동전력필터를 대체 할 수 있으며, 부하의 특성에 무관하게 적용 가능한 Z-소스 인버터(Z-source inverter) 토폴로지의 능동전력필터에 대하여 고찰하였다. Z-소스 토폴로지의 능동전력필터의 보상 직류전원으로는 연료전지 PEMFC를 사용하였다. 본 연구에서 제안된 시스템은 고조파 발생원 비선형 부하와 병렬로 연결된 Z-소스 능동전력필터와 7고조파 (420Hz) 동조 필터로 구성되며 Z-소스 능동전력필터의 스위치 스트레스를 감소할 수 있다. 제안된 Z-소스 하이브리드 능동전력필터(Z-HAF : Z-source hybrid active power filter)의 보상 알고리즘으로는 전류 동기 검출법(CSD)을 사용하였으며, PSIM 시뮬레이션에 의하여 제안된 Z-HAF의 정상상태에서의 보상 성능을 파악하였다.

  • PDF

Single-Phase Hybrid Active Power Filter Using Rotating Reference Frame (회전좌표계를 이용한 단상 하이브리드형 능동 전력필터)

  • Kim Jin-Sun;Kim Young-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.377-386
    • /
    • 2005
  • This paper presents the control algorithm of single-phase hybrid active power filter for the compensation of harmonic current components in nonlinear R-L load with passive active Power filters. To construct two phase system, an imaginary second phase was made. In this proposed method, the new signal which is the delayed through the filtering by the phase-delay property of low-pass filter is used as the secondary phase. Because two-phases have the different phase, the instantaneous calculation of harmonic current is possible. In this paper, a reference voltage is created by multiplying the coefficient k by the compensation current using the rotating reference frame synchronized with the source-frequency, not applying to instantaneous reactive power theory which has been used with the existing fixed reference frames In order to verify the validities of the proposed control methods, experiments are carried out with the prototypes of single-phase hybrid active power filter.

Comparison and Study of Active and Hybrid Power Filters for Compensation of Grid Harmonics

  • Gutierrez, Bryan;Kwak, Sang-Shin
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1541-1550
    • /
    • 2016
  • This paper presents a theoretical analysis and comparisons of active power filter (APF) and hybrid power filter (HPF) systems, given terminal constraints of harmonic compensations in nonlinear loads. Despite numerous publications for the two types of filters, the features and differences between them have not been clearly explained. This paper presents a detailed analysis of the operations of a HPF inverter along with those of passive power filters (PPFs). It also includes their effects on the power factor at the grid. In addition, a theoretical analysis and a systematic comparison between the APF and HPF systems are addressed based on system parameters such as the source voltage, output power, reactive component size, and power factor at the grid terminals. The converter kVA ratings and dc-link voltage requirements for both topologies are considered in the presented comparisons

Optimization of Residential Photovoltaic-Fuel Cell Hybrid System Using HOMER(R) (HOMER를 이용한 가정용 태양광-연료전지 하이브리드시스템의 운전 최적화)

  • Park, Se-Joon;Li, Ying;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.129-133
    • /
    • 2010
  • A hybrid system which is combined several complementary new and renewable power sources, such as photovoltaic, fuel-cell, and wind generator, etc., has been presented in various approaches. For instance, a photovoltaic cannot always generate stable output power with ever-changing weather condition, so it might be co-generated with a wind generator, diesel generator, and some other sources. In this paper, a residential PV-FC hybrid system is suggested as a distribution power source, and its operation is optimized by HOMER$^{(R)}$. As a result, it is the most economic that 5[kW] PV, 1[kW] FC, 4 batteries, 2[kW] electrolyzer, 0.5[kg] $H_2$ tank, 3[kW] converter are applied to the hybrid system.

Adaptive Sliding Mode Control with Enhanced Optimal Reaching Law for Boost Converter Based Hybrid Power Sources in Electric Vehicles

  • Wang, Bin;Wang, Chaohui;Hu, Qiao;Ma, Guangliang;Zhou, Jiahui
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.549-559
    • /
    • 2019
  • This paper proposes an adaptive sliding mode control (ASMC) strategy with an enhanced optimal reaching law (EORL) for the robust current tracking control of the boost converter based hybrid power source (HPS) in an electric vehicle (EV). A conventional ASMC strategy based on state observers and the hysteresis control method is used to realize the current tracking control for the boost converter based HPS. Then a novel enhanced exponential reaching law is proposed to improve the ASMC. Moreover, an enhanced exponential reaching law is optimized by particle swarm optimization. Finally, the adaptive control factor is redesigned based on the EORL. Simulations and experiments are established to validate the ASMC strategy with the EORL. Results show that the ASMC strategy with the EORL has an excellent current tracking control effect for the boost converter based HPS. When compared with the conventional ASMC strategy, the convergence time of the ASMC strategy with the EORL can be effectively improved. In EV applications, the ASMC strategy with the EORL can achieve robust current tracking control of the boost converter based HPS. It can guarantee the active and stable power distribution for boost converter based HPS.

Modeling and Experimental Validation of 5-level Hybrid H-bridge Multilevel Inverter Fed DTC-IM Drive

  • Islam, Md. Didarul;Reza, C.M.F.S.;Mekhilef, Saad
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.574-585
    • /
    • 2015
  • This paper aims to improve the performance of conventional direct torque control (DTC) drives proposed by Takahashi by extending the idea for 5-level inverter. Hybrid cascaded H-bridge topology is used to achieve inverter voltage vector composed of 5-level of voltage. Although DTC is very popular for its simplicity but it suffers from some disadvantages like- high torque ripple and uncontrollable switching frequency. To compensate these shortcomings conventional DTC strategy is modified for five levels voltage source inverter (VSI). Multilevel hysteresis controller for both flux and torque is used. Optimal voltage vector selection from precise lookup table utilizing 12 sector, 9 torque level and 4 flux level is proposed to improve DTC performance. These voltage references are produced utilizing a hybrid cascaded H-bridge multilevel inverter, where inverter each phase can be realized using multiple dc source. Fuel cells, car batteries or ultra-capacitor are normally the choice of required dc source. Simulation results shows that the DTC drive performance is considerably improved in terms of lower torque and flux ripple and less THD. These have been experimentally evaluated and compared with the basic DTC developed by Takahashi.

Design of a Hybrid Controller for the Three-phase Four-leg Voltage-source Inverter with Unbalanced Load

  • Doan, Van-Tuan;Kim, Ki-Young;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.181-189
    • /
    • 2017
  • The three-phase four-leg voltage-source inverter topology is an interesting option for the three-phase four-wire system. With an additional leg, this topology can achieve superior performance under unbalanced and nonlinear load conditions. However, because of the low bandwidth of conventional controllers in high-power inverter applications, the system cannot guarantee a balanced output voltage under the unbalanced load condition. Most of the methods proposed to solve this problem mainly use the multiple synchronous frame method, which requires several controllers and a large amount of computation because of frame transformation. This study proposes a simple hybrid controller that combines proportional-integral (PI) and resonant controllers in the synchronous frame synchronized with the positive-sequence component of the output voltage of the three-phase four-leg inverter. The design procedure for the controller and the theoretical analysis are presented. The performance of the proposed method is verified by the experimental results and compared with that of the conventional PI controller.

New method development for position estimation of underground acoustic source using a passive SONAR system

  • Jarng, Soon-Suck;Lee, Je-Hyeong;Ahn, Heung-Gu;Park, Heun-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.149-152
    • /
    • 1999
  • The aim of the work described in this paper is to develop a complex underground acoustic system which detects and localizes the origin of an underground hammering sound using an array of hydrophones located about loom underground. Three different methods for the sound localization will be presented, a time-delay method, a power-attenuation method and a hybrid method. In the time-delay method, the cross correlation of the signals received from the way of sensors is used to calculate the time delays between those signals. In the power-attenuation method, the powers of the received signals provide a measure of the distances of the source from the sensors. In the hybrid method, both informations of time-delays and power-ratios are coupled together to produce better performance of position estimation. A new acoustic imaging technique has been developed for improving the hybrid method. For each method the sound localization is carried out in three dimensions underground. The minimum distance between the true and estimated origins of the source is 28 m for a search area of radius 250m.

  • PDF

Heating Performance Analysis of Ground-Source Heat Pump (GSHP) System using Hybrid Ground Heat Exchanger (HGHE) (하이브리드 지중열교환기 적용 지열 히트펌프 시스템의 난방 성능 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.3
    • /
    • pp.8-16
    • /
    • 2020
  • This paper presents the heating performance analysis results of a ground-source heat pump (GSHP) system using hybrid ground heat exchanger (HGHE). In this paper, the HGHE refers to the ground heat exchanger (GHE) using both a surface water heat exchanger (SWHE) and a vertical GHE. In order to evaluate the system performance, we installed monitoring sensors for measuring temperatures and power consumption, and then measured operation data with 4 different load burdened ratios of the HGHE. During the entire measurement period, the average heating capacity of the heat pump was 37.3 kW. In addition, the compressor of the heat pump consumed 9.4 kW of power, while the circulating pump of the HGHE used 6.7 kW of power. Therefore, the average heating coefficient of performance (COP) for the heat pump unit was 4.0, while the system including the circulating pump was 2.7. Finally, the parallel use of SWHE and VGHE was beneficial to the system performance; however, further researches are needed to optimize the design data for various load ratios of the HGHE.

Contactless Power Supply for DC Power Service in Hybrid Home Generation System (직류수용가 서비스를 위한 무접점 전원장치)

  • Kang, J.W.;Song, H.K.;Kim, J.H.;Kim, E.S.;Kim, Y.H.
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.104-107
    • /
    • 2007
  • Among the alternative energy sources, the solar energy is recognized as an important energy source and its application is increasing. Especially in future, the hybrid solar energy generation system with battery will be widely used as an independent distributed power generation system. In this paper, a solar power hybrid home generation system using a contact-less power supply (CPS) that can transfer an electric power without any mechanical contact by using magnetic coupling instead of the power transfer by directly supplying the DC power to the home electric system is proposed. The proposed system consists of a ZVS boost converter, a half bridge LLC resonant converter and contact-less transformer.

  • PDF