• 제목/요약/키워드: hybrid peptides

검색결과 23건 처리시간 0.021초

Enhanced and Targeted Expression of Fungal Phytase in Saccharomyces cerevisiae

  • LIM, YOUNG-YI;EUN-HA PARK;JI-HYE KIM;SEUNG-MOON PARK;HYO-SANG JANG;YOUN-JE PARK;SEWANG YOON;MOON-SIK YANG;DAE-HYUK KIM
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권6호
    • /
    • pp.915-921
    • /
    • 2001
  • Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals, and reduces the phosphorus pollution of animal waste. In order to express a high level of fungal phytase in Saccharomyces cerevisiae, various expression vectors were constructed with different combinations of promoters, translation enhancers, signal peptides, and terminator. Three different promoters fused to the phytase gene (phyA) from Aspergillus niger were tested: a galactokinase (GAL1) promoter, glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter, and yeast hybrid ADH2-GPD promoter consisting of alcohol dehydrogenase II (ADH2) and a GPD promoter. The signal peptides of phytase, glucose oxidase (GO), and rice amylase 1A(RAmy1A) were included. Plus, the translation enhancers of the ${\Omega}$ sequence and UTR70 from the tobacco mosaic virus (TMV) and spinach, respectively, were also tested. Among the recombinant vectors, pGphyA06 containing the GPD promoter, the ${\Omega}$ sequence, RAmy1A, and GAL7 terminator expressed the highest phytase activity in a culture filtrate, which was estimated at 20 IU/ml. An intracellular localization of the expressed phytase activity in a culture filtrate, which was estimated at 20 IU/ml. An intracellular localization of the expressed phytase was also performed by inserting an endoplasmic reticulum (ER) retention signal, KDEL sequence, into the C-terminus of the phytase within the vector pHphyA-6. It appeared that the KDEL sequence directed most of the early expression of phytase into the intracellular compartment yet more than $60\%$ of the total phytase activity was still retained within the cell even after the prolonged (>3 days) incubation of the transformant. However, the intracellular enzyme activity of the transformant without a KDEL sequence was as high as that of the extracellular one, thereby strongly suggesting that the secretion of phytase in S. cerevisiae appeared to be the rate-limiting step for the expression of a large amount of extracellular recombinant phytase, when compared with other yeasts.

  • PDF

Biological Inspiration toward Artificial Photostystem

  • Park, Jimin;Lee, Jung-Ho;Park, Yong-Sun;Jin, Kyoungsuk;Nam, Ki Tae
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.91-91
    • /
    • 2013
  • Imagine a world where we could biomanufacture hybrid nanomaterials having atomic-scale resolution over functionality and architecture. Toward this vision, a fundamental challenge in materials science is how to design and synthesize protein-like material that can be fully self-assembled and exhibit information-specific process. In an ongoing effort to extend the fundamental understanding of protein structure to non-natural systems, we have designed a class of short peptides to fold like proteins and assemble into defined nanostructures. In this talk, I will talk about new strategies to drive the self-assembled structures designing sequence of peptide. I will also discuss about the specific interaction between proteins and inorganics that can be used for the development of new hybrid solar energy devices. Splitting water into hydrogen and oxygen is one of the promising pathways for solar to energy convertsion and storage system. The oxygen evolution reaction (OER) has been regarded as a major bottleneck in the overall water splitting process due to the slow transfer rate of four electrons and the high activation energy barrier for O-O bond formation. In nature, there is a water oxidation complex (WOC) in photosystem II (PSII) comprised of the earthabundant elements Mn and Ca. The WOC in photosystem II, in the form of a cubical CaMn4O5 cluster, efficiently catalyzes water oxidation under neutral conditions with extremely low overpotential (~160 mV) and a high TOF number. The cluster is stabilized by a surrounding redox-active peptide ligand, and undergo successive changes in oxidation state by PCET (proton-coupled electron transfer) reaction with the peptide ligand. It is fundamental challenge to achieve a level of structural complexity and functionality that rivals that seen in the cubane Mn4CaO5 cluster and surrounding peptide in nature. In this presentation, I will present a new strategy to mimic the natural photosystem. The approach is based on the atomically defined assembly based on the short redox-active peptide sequences. Additionally, I will show a newly identified manganese based compound that is very close to manganese clusters in photosystem II.

  • PDF

Effects of Halophilic Peptide Fusion on Solubility, Stability, and Catalytic Performance of $\small{D}$-Phenylglycine Aminotransferase

  • Javid, Hossein;Jomrit, Juntratip;Chantarasiri, Aiya;Isarangkul, Duangnate;Meevootisom, Vithaya;Wiyakrutta, Suthep
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권5호
    • /
    • pp.597-604
    • /
    • 2014
  • $\small{D}$-Phenylglycine aminotransferase ($\small{D}$-PhgAT) from Pseudomonas stutzeri ST-201 is useful for enzymatic synthesis of enantiomerically pure $\small{D}$-phenylglycine. However, its low protein solubility prevents its application at high substrate concentration. With an aim to increase the protein solubility, the N-terminus of $\small{D}$-PhgAT was genetically fused with short peptides ($A_1$ ${\alpha}$-helix, $A_2$ ${\alpha}$-helix, and ALAL, which is a hybrid of $A_1$ and $A_2$) from a ferredoxin enzyme of a halophilic archaeon, Halobacterium salinarum. The fused enzymes $A_1$-$\small{D}$-PhgAT, $A_2$-$\small{D}$-PhgAT, and ALAL-$\small{D}$-PhgAT displayed a reduced pI and increased in solubility by 6.1-, 5.3-, and 8.1- fold in TEMP (pH 7.6) storage, respectively, and 5-, 4.5-, and 5.9-fold in CAPSO (pH 9.5) reaction buffers, respectively, compared with the wild-type enzyme (WT-$\small{D}$-PhgAT). In addition, all the fused $\small{D}$-PhgAT displayed higher enzymatic reaction rates than the WT-DPhgAT at all concentrations of L-glutamate monosodium salt used. The highest rate, $23.82{\pm}1.47$ mM/h, was that obtained from having ALAL-$\small{D}$-PhgAT reacted with 1,500 mM of the substrate. Moreover, the halophilic fusion significantly increased the tolerance of $\small{D}$-PhgAT in the presence of NaCl and KCl, being slightly in favor of KCl, where under the same condition at 3.5 M NaCl or KCl all halophilic-fused variants showed higher activity than WT-$\small{D}$-PhgAT.