• Title/Summary/Keyword: hybrid organic materials

Search Result 291, Processing Time 0.028 seconds

Preparation of Transparent Organic-Inorganic Hybrid Hard Coating Films and Physical Properties by the Content of SiO2 or ZrO2 in Their Films (투명 유-무기 하이브리드 하드코팅 필름 제조 및 SiO2 또는 ZrO2함량에 따른 필름의 물성)

  • Seol, Hyun Tae;Na, Ho Seong;Kwon, Dong Joo;Kim, Jung Sup;Kim, Dae Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.12-18
    • /
    • 2017
  • Transparent organic-inorganic hybrid hard coating films were prepared by the addition of $SiO_2$ or $ZrO_2$, as an inorganic filler to improve the hardness property, filler was highly dispersed in the acrylic resin. To improve the compatibility in the acrylic resin, $SiO_2$ or $ZrO_2$ is surface-modified using various silanes with variation of the modification time and silane content. Depending on the content and kind of the modified inorganic oxide, transparent modified inorganic sols were formulated in acryl resin. Then, the sols were bar coated and cured on PET films to investigate the optical and mechanical properties. The optimized film, which has a modified $ZrO_2$ content of 4 wt% markedly improved in terms of the hardness, haze, and transparency as compared to neat acrylate resin and acrylate resin containing modified $SiO_2$ content of 8 wt%. Meanwhile, the low transparency and high haze of these films slowly appeared at $SiO_2$ content above 10 wt% and $ZrO_2$ content of 5 wt%, but the hardness values were maintained at 2H and 3H, respectively, in comparison with the HB of neat acrylate resin.

Technology and Application of Hybrid Insulation Film for Electric Magnet Wire (하이브리드 절연필름의 전동기권선 적용 특성 연구)

  • Han, Se-Won;Han, Dong-Hee;Kang, Dong-Phil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.210-211
    • /
    • 2006
  • This study presents the technology and application of hybrid insulation film for electric magnet wire. In order to make the high efficient motor with high space factor, it is necessary to develop a self-lubrication heat-resistant insulation film that can be used when the space factor 70% or more. A key to achieving high windability is to increase the lubricity and bonding strength of vanish, which for a magnet wire generally determines the mechanical scratches characteristics. Effective ways to reduce scratches include improving insulation film prepared by organic and inorganic hybrid synthesis methods.

  • PDF

Organic-inorganic Hybrid Materials for Spin Coating Hardmask (스핀코팅 하드마스크용 유-무기 하이브리드 소재에 관한 연구)

  • Yu, Je Jeong;Hwang, Seok-Ho;Kim, Sang Bum
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.230-234
    • /
    • 2011
  • In this work, the primary material for a single layered hardmask which can afford a spin-on process was prepared by the minture of organic and inorganic sources. The preparation of hybrid polymer was attempted by esterification from silanol terminated siloxane compounds and acetonide-2,2-bis(methoxy)propionic acid. The optical, thermal and morphological properties of the test hardmask film was examined in terms of cross-linking agent and additives. In addition, the etch rate of hardmask film and photo resist layer were compared. The hybrid polymer prepared from organic and inorganic materials was found to be useful for hardmask film to form the nano-patterns.

Preparation of Organic Dye-Inorganic Silica Hybrid Pigment and It's Application for Inkjet Dispersion Ink (유기 염료-무기 실리카 하이브리드 안료의 제조와 분산잉크로서 응용)

  • Jeon, Young-Min;Kim, Jong-Gyu;Gong, Myoung-Seon
    • Korean Journal of Materials Research
    • /
    • v.16 no.7
    • /
    • pp.422-429
    • /
    • 2006
  • Studies were performed on preparation of organic-inorganic hybrid silica dye in a dispersing ink system. The silica was subjected to surface modification using 3-aminopropyltrimethoxysilane (APTMS) in order to promote the chemical reactivity of the raw silica. On the surfaces of the aminosilane-functionalised silica, red vinylsulfone-containing azo dye was adsorbed. The dye was found to have chemically reacted with the aminosilane-grafted silica surface, which was proven by FT-IR spectra. Studies on morphology and microstructure were performed employing scanning electron microscopy. The SEM micrographs and particle size distributions showed that a homogeneous pigment can be obtained employing silica as a core. Particle size distribution was also examined using the technique of dynamic light scattering. The ensuing pigment was subjected to various physicochemical evaluation such as inkjet property, storage stability, color change as inkjet ink using printer, spectrophotometric, microscopic techniques. Studies on hybrid dyes from the silica surface demonstrated that, in general, stable pigments for inkjet dispersion ink were obtained.

Liquid crystal effects on poling behaviour of NLO chromophore dispersed in organically modified sol-gel materials (유/무기 졸-겔 재료에 비선형광학 물질의 배향특성에 대한 액정효과)

  • Baek, In-Chan;Seok, Sang-Il;Jin, Moon-Young;Lee, Chang-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.132-132
    • /
    • 2003
  • Second-order nonlinear optical(NLO) materials have been extensively studied for applications in photonic devices, such as frequency doubling and electro-optical(EO) modulation, because of their large optical nonlinearity, excellent processibility, low dielectric constant, and high laser damage thresholds. The poling behaviour of NLO chromophore in organic/inorganic matrixes showed the randomization of poled NLO chromophore in the absence of poling Held. The liquid crystal molecules in a droplet showed a long-range orientational order along a director. Therefore, liquid crystal effects on poling behaviour of NLO chromophore dispersed in organically modified inorganic sol-gel materials were investigated. Using sol-gel process for the development of NLO material has received increasing attention, Organically modifked inorganic NLO sol-Eel materials are obtained via incorporation of the organic NLO active chromophore into an alkoxysilane based inorganic network. One of the most important thing in this works was that tetraethoxysilane(TEOS) and methyltrimathoxysilane(HTMS) were used as precursor followed by hydrolysis and condensation without using any acidic catalyst during the process. The NLO chromophores in the liquid crystal nanodomains were well mixed with I/O hybrid matrix, deposited on transparent ITO-coated glasses. The poling behaviour of liquid crystal effects of NLO chromophore dispersed in I/O hybrid matrix were investigated by UV-vis spectroscopy. Size distribution and morphology of the NLO chromophores doped in the liquid crystal nanodomains dispersed in I/O hybrid matrix were investigated by SEM.

  • PDF

Evaluation of acetaldehyde removal performance of a hybrid adsorbent consisting of organic and inorganic materials (유무기 융복합 흡착제의 아세트알데하이드 제거 성능 평가)

  • Ahn, Hae Young;Lee, Yoon Kyoung;Song, JiHyeon
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.372-380
    • /
    • 2018
  • To abate the problem of odor from restaurants, a hybrid adsorbent consisting of organic and inorganic materials was developed and evaluated using acetaldehyde as a model compound was deveioped and evaluated. Powders of activated carbon, bentonite, and calcium hydroxide were mixed and calcinated to form adsorbent structure. The surface area of the hybrid adsorbent was smaller than that of high-quality activated carbon, but its microscopic image showed that contours and pores were developed on its surface. To determine its adsorption capacity, both batch isotherm and continuous flow column experiments were performed, and these results were compared with those using commercially available activated carbon. The isotherm tests showed that the hybrid adsorbent had a capacity 40 times higher than that of the activated carbon. In addition, the column experiments revealed that breakthrough time of the hybrid adsorbent was 2.5 times longer than that of the activated carbon. These experimental results were fitted to numerical simulations by using a homogeneous surface diffusion model (HSDM); the model estimated that the hybrid adsorbent might be able to remove acetaldehyde at a concentration of 40 ppm for a 5-month period. Since various odor compounds are commonly emitted as a mixture when meat is barbecued, it is necessary to conduct a series of experiments and HSDM simulations under various conditions to obtain design parameters for a full-scale device using the hybrid adsorbent.

Effect of Textile Pattern on Mechanical and Impregnation Properties of Glass Fiber/Thermoplastic Composite (유리 섬유/열가소성 복합 재료의 기계적 및 함침 특성에 대한 직물 패턴의 영향)

  • Kim, Neul-Sae-Rom;Lee, Eun-Soo;Jang, Yeong-Jin;Kwon, Dong-Jun;Yang, Seong Baek;Yeom, Jung-Hyun
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.317-322
    • /
    • 2018
  • In various industry, the composite is tried to be applied to products and thermoplastic based composite is in the spotlight because this composite can be recycled. The use of continuous fiber thermoplastic (CFT) method increased gradually than long fiber thermoplastic (LFT). In this study, tensile, flexural, and impact test of different array types of glass fiber (GF)/thermoplastic composites were performed to compare with GF array. Impregnation property between GF mat and thermoplastic was determined using computed tomography (CT). At CFT method, thermoplastic film is not wet into GF roving and many voids are appeared into composite. This phenomenon affects to decrease mechanical properties. Plain pattern GF mat was the best mechanical and impregnation properties that distance between two roving was set closely to $100{\mu}m$.

The Fundamental Properties of Organic-Inorganic Hybrid Packaging Materials for Bike Paths using Industrial By-products (산업부산물을 이용한 유무기 복합 자전거 도로 포장재의 기초적 특성)

  • Oh, Dong-Uk;Lee, Gun-Cheol;Kim, Young-Geun;Cho, Chung-Ki;Kim, Na-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.94-101
    • /
    • 2011
  • In this study, in order to develop organic-inorganic hybrid packaging materials(PM) of bike paths using blast furnace slag(BS) as industrial by-products, fundamental properties of organic-inorganic hybrid packaging materials were performed. Test result, the increase of Acryl emulsion polymer(AEP)/binder(B) ratios tends to delay the setting time, to increase the table flow, to decrease the strength by material segregation and to increase the length change. The optimal mix proportion of AEP decides on 40%(AEP/B) due to workability and high strength. The increase of BS replacement ratios also tends to delay the setting time, to separate AEP from B and to decrease the strength by material segregation. When BS replacement ratios were lower than 40%, they are satisfied with goal properties.

  • PDF

Use of Core-Crosslinked Amphiphilic Polymer Nanoparticles as Templates for Synthesis of Nanostructured Inorganic Materials (코아 가교 양친성 고분자 나노입자 템플레이트를 이용한 무기물 나노 구조체 합성)

  • Kim, Hyun-Ji;Kim, Na-Hae;Kim, Juyoung
    • Journal of Adhesion and Interface
    • /
    • v.16 no.1
    • /
    • pp.6-14
    • /
    • 2015
  • In this study, physically and chemically stable core-crosslinked amphiphilic polymer (CCAP) nanoparticles were prepared using amphiphilic reactive precursors via soap-free emulsion process. Obtained CCAP nanoparticles were used as templates for synthesis of nanostructured $TiO_2$ nanoparticles. First, CCAP nanoparticles dispersed aqueous solutions were mixed with titanium isopropoxide to prepare stable organic-inorganic hybrid sols, and then obtained sols were spin coated onto glass substrate to prepare hybrid thin films onto glass, and then hybrid thin films were calcinated at various temperature to remove CCAP. Nanostructure of calcinated thin fims were examined by SEM. To study effect of CCAP nanoparticles on nanostructure of $TiO_2$ nanoparticles, the morphology of $TiO_2$ nanoparticles prepared using various CCAP templates was compared with that of $TiO_2$ nanoparticles prepared using conventional organic template, nonionic surfactant, Triton X-100.

Corrosion Resistance of Al6061-T6 by Organic/Inorganic Hybrid Coating Solution (유/무기하이브리드 코팅액에 의한 Al6061-T6의 내식 특성)

  • Mi-Hyang Park;Ki-Hang Shin;Byoung-Chul Choi;Byung-Hyun Ahn;Gum-Hwa Lee;Ki-Woo Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.591-598
    • /
    • 2023
  • In this study, the corrosion resistance by salt spray was evaluated using A6061-T6 for an electric vehicle battery pack case coated with an organic/inorganic hybrid solution. The lowest curing temperature of 190 ℃ resulted in significant corrosion and pitting. Meanwhile, no corrosion was observed in the coated specimens at 210 ℃ and 230 ℃ except at 210 ℃ - 6 min and 8 min. The surface of the as-received coating specimen observed by FE-SEM exhibited streaks and dents in the rolling direction, but the coating surface was clean. On the 190 ℃ - 6 min coating specimen, which had a lot of corrosion, rolling streaks spread, and dents were caused by corrosion. The 200 ℃ - 12 min coating specimen did not show corrosion, but it showed an etched surface. In the line profile, Si, the main component of the coating solution, was detected the most, and Ti was also detected. In the coating specimens with salt spray, O increased and Si decreased, regardless of corrosion. The peeling rate by adhesion evaluation was 26 - 87% for the 190 ℃ coating specimen, 4 - 83% for the 210 ℃ coating specimen, and 94 - 100% for the 230 ℃ coating specimen. The optimal curing conditions for the coating solution used in this study were 210 ℃ for 10 min.