Wu, Dizi;LI, Shuhua;Moayedi, Hossein;CIFCI, Mehmet Akif;Le, Binh Nguyen
Steel and Composite Structures
/
v.45
no.2
/
pp.281-291
/
2022
Surmounting complexities in analyzing the mechanical parameters of concrete entails selecting an appropriate methodology. This study integrates a novel metaheuristic technique, namely satin bowerbird optimizer (SBO) with artificial neural network (ANN) for predicting uniaxial compressive strength (UCS) of concrete. For this purpose, the created hybrid is trained and tested using a relatively large dataset collected from the published literature. Three other new algorithms, namely Henry gas solubility optimization (HGSO), sunflower optimization (SFO), and vortex search algorithm (VSA) are also used as benchmarks. After attaining a proper population size for all algorithms, the Utilizing various accuracy indicators, it was shown that the proposed ANN-SBO not only can excellently analyze the UCS behavior, but also outperforms all three benchmark hybrids (i.e., ANN-HGSO, ANN-SFO, and ANN-VSA). In the prediction phase, the correlation indices of 0.87394, 0.87936, 0.95329, and 0.95663, as well as mean absolute percentage errors of 15.9719, 15.3845, 9.4970, and 8.0629%, calculated for the ANN-HGSO, ANN-SFO, ANN-VSA, and ANN-SBO, respectively, manifested the best prediction performance for the proposed model. Also, the ANN-VSA achieved reliable results as well. In short, the ANN-SBO can be used by engineers as an efficient non-destructive method for predicting the UCS of concrete.
Mulomba Mukendi Christian;Yun Seon Kim;Hyebong Choi;Jaeyoung Lee;SongHee You
International Journal of Advanced Culture Technology
/
v.11
no.4
/
pp.393-405
/
2023
Accurate prediction of wind speed and power is vital for enhancing the efficiency of wind energy systems. Numerous solutions have been implemented to date, demonstrating their potential to improve forecasting. Among these, deep learning is perceived as a revolutionary approach in the field. However, despite their effectiveness, the noise present in the collected data remains a significant challenge. This noise has the potential to diminish the performance of these algorithms, leading to inaccurate predictions. In response to this, this study explores a novel feature engineering approach. This approach involves altering the data input shape in both Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and Autoregressive models for various forecasting horizons. The results reveal substantial enhancements in model resilience against noise resulting from step increases in data. The approach could achieve an impressive 83% accuracy in predicting unseen data up to the 24th steps. Furthermore, this method consistently provides high accuracy for short, mid, and long-term forecasts, outperforming the performance of individual models. These findings pave the way for further research on noise reduction strategies at different forecasting horizons through shape-wise feature engineering.
Collaborative filtering, which is often used in personalization recommendations, is recognized as a very useful technique to find similar customers and recommend products to them based on their purchase history. However, the traditional collaborative filtering technique has raised the question of having difficulty calculating the similarity for new customers or products due to the method of calculating similaritiesbased on direct connections and common features among customers. For this reason, a hybrid technique was designed to use content-based filtering techniques together. On the one hand, efforts have been made to solve these problems by applying the structural characteristics of social networks. This applies a method of indirectly calculating similarities through their similar customers placed between them. This means creating a customer's network based on purchasing data and calculating the similarity between the two based on the features of the network that indirectly connects the two customers within this network. Such similarity can be used as a measure to predict whether the target customer accepts recommendations. The centrality metrics of networks can be utilized for the calculation of these similarities. Different centrality metrics have important implications in that they may have different effects on recommended performance. In this study, furthermore, the effect of these centrality metrics on the performance of recommendation may vary depending on recommender algorithms. In addition, recommendation techniques using network analysis can be expected to contribute to increasing recommendation performance even if they apply not only to new customers or products but also to entire customers or products. By considering a customer's purchase of an item as a link generated between the customer and the item on the network, the prediction of user acceptance of recommendation is solved as a prediction of whether a new link will be created between them. As the classification models fit the purpose of solving the binary problem of whether the link is engaged or not, decision tree, k-nearest neighbors (KNN), logistic regression, artificial neural network, and support vector machine (SVM) are selected in the research. The data for performance evaluation used order data collected from an online shopping mall over four years and two months. Among them, the previous three years and eight months constitute social networks composed of and the experiment was conducted by organizing the data collected into the social network. The next four months' records were used to train and evaluate recommender models. Experiments with the centrality metrics applied to each model show that the recommendation acceptance rates of the centrality metrics are different for each algorithm at a meaningful level. In this work, we analyzed only four commonly used centrality metrics: degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. Eigenvector centrality records the lowest performance in all models except support vector machines. Closeness centrality and betweenness centrality show similar performance across all models. Degree centrality ranking moderate across overall models while betweenness centrality always ranking higher than degree centrality. Finally, closeness centrality is characterized by distinct differences in performance according to the model. It ranks first in logistic regression, artificial neural network, and decision tree withnumerically high performance. However, it only records very low rankings in support vector machine and K-neighborhood with low-performance levels. As the experiment results reveal, in a classification model, network centrality metrics over a subnetwork that connects the two nodes can effectively predict the connectivity between two nodes in a social network. Furthermore, each metric has a different performance depending on the classification model type. This result implies that choosing appropriate metrics for each algorithm can lead to achieving higher recommendation performance. In general, betweenness centrality can guarantee a high level of performance in any model. It would be possible to consider the introduction of proximity centrality to obtain higher performance for certain models.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.47
no.6
/
pp.28-39
/
2010
The study aims at offering a solution to the problems of transmission delay and data throughput decrease as the number of contending On-Board Units (OBU) increases by applying CSMA medium access control protocol based upon IEEE 802.11p. In a competition-based medium, contention probability becomes high as OBU increases. In order to improve the performance of this medium access layer, the author proposes EDCA which a adaptive adjustment of the Contention Windows (CW) considering traffic density and data type. EDCA applies fixed values of Minimum Contention Window (CWmin) and Maximum Contention Window (CWmax) for each of four kinds of Access Categories (AC) for channel-specific service differentiation. EDCA does not guarantee the channel-specific features and network state whereas it guarantees inter-AC differentiation by classifying into traffic features. Thus it is not possible to actively respond to a contention caused by network congestion occurring in a short moment in channel. As a solution, CWminAS(CWmin Adaptation Scheme) and ACATICT(Adaptive Contention window Adjustment Technique based on Individual Class Traffic) are proposed as active CW control techniques. In previous researches, the contention probabilities for each value of AC were not examined or a single channel based AC value was considered. And the channel-specific demands of IEEE 802.11p and the corresponding contention probabilities were not reflected in the studies. The study considers the collision number of a previous service section and the current network congestion proposes a dynamic control technique ACCW(Adaptive Control of Contention windows in considering the WAVE situation) for CW of the next channel.
Jo, Mi-Rim;Seong, Dong-Ook;Park, Jun-Ho;Yoo, Jae-Soo
The Journal of the Korea Contents Association
/
v.11
no.12
/
pp.78-87
/
2011
A variety of intelligent application using the sensor network system is being studied. In general, the sensor network consists of nodes which equipped with a variety of sensing module and is utilized to collect environment information. Recently, the demands of multimedia data are increasing due to the demands of more detailed environmental monitoring or high-quality data. In this paper, we overcome the limitations of low bandwidth in Zigbee-based sensor networks and propose a routing algorithm for real-time multimedia data transmission. In the previously proposed algorithm for multimedia data transmission occurs delay time of routing setup phase and has a low data transmission speed due to bandwidth limitations of Zigbee. In this paper, we propose the hybrid routing algorithm that consist of Zigbee and Bluetooth and solve the bandwidth problem of existing algorithm. We also propose the disjointed multipath setup algorithm based on competition that overcome delay time of routing setup phase in existing algorithm. To evaluate the superiority of the proposed algorithm, we compare it with the existing algorithm. Our experimental results show that the latency was reduced by approximately 78% and the communication speed is increased by approximately 6.9-fold.
In a yeast two-hybrid screen, we identified the microtubule-destabilizing protein SCG10 as a potential effector protein of $BRI_3$. The association was verified using GST pull-down, Co-IP, and their perinuclear co-localization. The analysis of in vitro microtubule polymerization/depolymerization showed that the binding of $BRI_3$ to SCG10 effectively blocked the ability of SCG10 to induce microtubule disassembly, as determined by turbidimetric assays. In intact PC12 cells, $BRI_3$ exhibited the ability to stabilize the microtubule network and attenuate the microtubule-destabilizing activity of SCG10. Furthermore, co-expression of $BRI_3$ with SCG10 attenuated SCG10-mediated PC12 cell neurite outgrowth induced by NGF. These results identify a novel connection between a neuron-specific BRI protein and the cytoskeletal network, suggesting possible roles of BRI3 in the process of neuronal differentiation.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.15
no.9
/
pp.896-905
/
2004
In this paper, the design, fabrication and experiment on a planar array antenna with a flat-topped radiation pattern for a mobile base station antenna were described. The current distribution of an antenna aperture, which is easily realizable in a feeding network compared with the conventional one of sin(x)/x was optimized for shaping a desired flat-topped radiation pattern. The planar array antenna designed in this paper has a rectangular lattice and is composed of array elements of 16${\times}$8. Each radiating element, which is a microstrip element fed coaxially, has a linear vertical polarization and the feed network which use a Wilkinson power divider and a 180$^{\circ}$ ring hybrid coupler as a base element is designed. The flat-topped radiation pattern with 90$^{\circ}$ is shaped by 16 array elements with the element spacing of 0.55 λ$_{ο}$ in the azimuth plane, and the normal radiation pattern with 10$^{\circ}$ is shaped by 8 array elements with the element spacing of 0.65 λ$_{ο}$ in the elevation plane. Also, the planar array antenna is symmetrically divided into four parts. It consists of one hundred-twenty-eight radiating elements, thirty-two 1-4 column dividers, low 1-8 row dividers and one 1-4 input power divider. In order to verify electrical performances of the planar way antenna proposed in this paper, the experimental breadboard operated in tile band of 1.92~2.17 GHz(IMT2000 band) was fabricated, and its experimental results were a good agreement with simulation ones.
Artificial Organism-used application areas are expanding at a break-neck speed with a view to getting things done in a dynamic and Informal environment. A use of general programming or traditional hi methods as the representation of Artificial Organism behavior knowledge in these areas can cause problems related to frequent modifications and bad response in an unpredictable situation. Strategies aimed at solving these problems in a machine-learning fashion includes Genetic Programming and Evolving Neural Networks. But the learning method of Artificial-Organism is not good yet, and can't represent life in the environment. With this in mind, this research is designed to come up with a new behavior evolution model. The model represents behavior knowledge with Classification Rules and Enhanced Backpropation Neural Networks and discriminate the denomination. To evaluate the model, the researcher applied it to problems with the competition of Artificial-Organism in the Simulator and compared with other system. The survey shows that the model prevails in terms of the speed and Qualify of learning. The model is characterized by the simultaneous learning of classification rules and neural networks represented on chromosomes with the help of Genetic Algorithm and the consolidation of learning ability caused by the hybrid processing of the classification rules and Enhanced Backpropagation Neural Network.
As the recent development of the IT services, there is a urgent need of effective diagnosis system to present appropriate solution for the complicated problems of breakdown control, a cause analysis of breakdown and others. So we propose an intelligent diagnosis system that integrates the case-based reasoning and the artificial neural network to improve the system performance and to achieve optimal diagnosis. The case-based reasoning is a reasoning method that resolves the problems presented in current time through the past cases (experience). And it enables to make efficient reasoning by means of less complicated knowledge acquisition process, especially in the domain where it is difficult to extract formal rules. However, reasoning by using the case-based reasoning alone in diagnosis problem domain causes a problem of suggesting multiple causes on a given symptom. Since the suggested multiple causes of given symptom has the same weight, the unnecessary causes are also examined as well. In order to resolve such problems, the back-propagation learning algorithm of the artificial neural network is used to train the pairs of the causes and associated symptoms and find out the cause with the highest weight for occurrence to make more clarified and reliable diagnosis.
Korean Journal of Construction Engineering and Management
/
v.21
no.6
/
pp.113-124
/
2020
Social movements to improve the performance of buildings through remodeling of aging apartment houses are being captured. To this end, the remodeling construction cost analysis, structural analysis, and political institutional review have been conducted to suggest ways to activate the remodeling. However, although the method of analyzing construction cost for remodeling apartment houses is currently being proposed for research purposes, there are limitations in practical application possibilities. Specifically, In order to be used practically, it is applicable to cases that have already been completed or in progress, but cases that will occur in the future are also used for construction cost analysis, so the sustainability of the analysis method is lacking. For the purpose of this, we would like to suggest an automated estimating method. For the sustainability of construction cost estimates, Deep-Learning was introduced in the estimating procedure. Specifically, a method for automatically finding the relationship between design elements, work types, and cost increase factors that can occur in apartment remodeling was presented. In addition, Monte Carlo Simulation was included in the estimation procedure to compensate for the lack of uncertainty, which is the inherent limitation of the Deep Learning-based estimation. In order to present higher accuracy as cases are accumulated, a method of calculating higher accuracy by comparing the estimate result with the existing accumulated data was also suggested. In order to validate the sustainability of the automated estimates proposed in this study, 13 cases of learning procedures and an additional 2 cases of cumulative procedures were performed. As a result, a new construction cost estimating procedure was automatically presented that reflects the characteristics of the two additional projects. In this study, the method of estimate estimate was used using 15 cases, If the cases are accumulated and reflected, the effect of this study is expected to increase.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.