• Title/Summary/Keyword: hybrid mesh

Search Result 146, Processing Time 0.025 seconds

Numerical Studies of Supersonic Planar Mixing and Turbulent Combustion using a Detached Eddy Simulation (DES) Model

  • Vyasaprasath, Krithika;Oh, Sejong;Kim, Kui-Soon;Choi, Jeong-Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.560-570
    • /
    • 2015
  • We present a simulation of a hybrid Reynolds-averaged Navier Stokes / Large Eddy Simulation (RANS/LES) based on detached eddy simulation (DES) for a Burrows and Kurkov supersonic planar mixing experiment. The preliminary simulation results are checked in order to validate the numerical computing capability of the current code. Mesh refinement studies are performed to identify the minimum grid size required to accurately capture the flow physics. A detailed investigation of the turbulence/chemistry interaction is carried out for a nine species 19-step hydrogen-air reaction mechanism. In contrast to the instantaneous value, the simulated time-averaged result inside the reactive shear layer underpredicts the maximum rise in $H_2O$ concentration and total temperature relative to the experimental data. The reason for the discrepancy is described in detail. Combustion parameters such as OH mass fraction, flame index, scalar dissipation rate, and mixture fraction are analyzed in order to study the flame structure.

Seismic behavior of steel frames with lightweight-low strength industrialized infill walls

  • Zahrai, Seyed Mehdi;Khalili, Behnam Gholipour;Mousavi, Seyed Amin
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1273-1290
    • /
    • 2015
  • JK wall is a shear wall made of lightweight EPS mortar and reinforced with a 3-D galvanized steel mesh, called JK panel, and truss-like stiffeners, called JK stiffeners. Earlier studies have shown that low strength lightweight concrete has the potential to be used in structural elements. In this study, seismic contribution of the JK infill walls surrounded by steel frames is numerically investigated. Adopting a hybrid numerical model, behavior envelop of the wall is derived from the general purpose finite element software, Abaqus. Obtained backbone would be implemented in the professional analytical software, SAP2000, in which through calibrated hysteretic parameters, cyclic behavior of the JK infill can be simulated. Through comparison with earlier experimental results, it turned out that the proposed hybrid modeling can simulate monotonic and cyclic behavior of JK walls with good accuracy. JK infills have a panel-type configuration which their dominant failure mode would be ductile in flexure. Finally technical and economical advantages of the proposed JK infills are assessed for two representative multistory buildings. It is revealed that JK infills can reduce maximum inter-story drifts as well as residual drifts at the expense of minor increase in the developed base shear.

Broadband Noise Prediction of the Ice-maker Centrifugal Fan in a Refrigerator Using Hybrid CAA Method and FRPM Technique (복합 CAA 방법과 FRPM 기법을 이용한 냉장고 얼음제조용 원심팬의 광대역 소음 예측)

  • Heo, Seung;Kim, Dae-Hwan;Cheong, Cheol-Ung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.391-398
    • /
    • 2012
  • In this paper, prediction of centrifugal fan was conducted through combination the hybrid CAA method which was used to predict the fan noise with the FRPM technique which was used to generate the broadband noise source. Firstly, flow field surround the centrifugal fan was computed using the RANS equations and noise source region was deducted from the computed flow field. Then the FRPM technique was applied to the source region for generation of turbulence which satisfies the stochastic features. The noise source of the centrifugal fan was modeled by applying the acoustic analogy to the synthesized flow field from the computed and generated flow fields. Finally, the broadband noise of the centrifugal fan was predicted through combination the modeled noise source with the linear propagation which was realized using the boundary element method. It was confirmed that the proposed technique is efficient to predict the tonal and broadband noises of centrifugal fan through comparison with the measured data.

A New Hydrodynamic Simulation Using Unstructured Moving Meshes

  • Yun, Kiyun;Yoon, Suk-Jin;Kim, Juhan;Kim, Sungsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.50.1-50.1
    • /
    • 2015
  • We present a new hydrodynamic simulation based on the unstructured moving mesh scheme. The simulation utilizes the Voronoi tessellation technique that produces polygonal cells composed of, on average, 13 surfaces each in 3D. We devise the incremental expanding method (IEM) and hybrid-neighbor searching algorithm and achieve the CPU time just proportional to the number of particles, i.e., O(N). We show the results of requisite tests for hydrodynamic simulations and demonstrate superiority of our code over the conventional codes using the stationary meshes. The applications in the context of cosmological and galactic simulations are also discussed.

  • PDF

NUMERICAL SIMULATION OF LID-DRIVEN FLOW IN A SQUARE CAVITY AT HIGH REYNOLDS NUMBERS (정사각 캐비티내 고레이놀즈수 Lid-Driven 유동의 수치해석)

  • Myong H. K.
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.18-23
    • /
    • 2005
  • Numerical simulations of two-dimensional steady incompressible lid-driven flow in a square cavity are presented by a new solution code(PowerCFD) which adopts an unstructured cell-centered method. Solutions are obtained for configurations with a Reynolds number as high as 10,000 with both rectangular and hybrid types of unstructured grid mesh in order to validate the code's independency of grid type. Interesting features of the flow are presented in detail and comparisons are made with benchmark solutions found in the literature. It is found that the code is capable of producing accurately the nature of the lid-driven cavity flow at high Reynolds numbers with no grid type dependency.

인터렉티브 하이브리드 미디어 응용기술 -MPEG-4 SNHC를 중심으로-

  • 김형곤
    • Broadcasting and Media Magazine
    • /
    • v.3 no.2
    • /
    • pp.44-58
    • /
    • 1998
  • 최근의 멀티미디어 기술은 정보의 디지털화와 온라인화에 따라 가전, 컴퓨터, 통신 및 방송 기술이 융화되어 가는 추세에 있으며, 대화형의 하이브리드 멀티미디어 기술을 그 특징으로 하고있다. 하이브리드 멀티미디어는 컴퓨터 그래픽 및 미디(MIDI) 기술로 인위적으로 생성한 2D/3D그래픽 및 음향을 실제의 자연적인 영상과 소리에 추가하여 합성하므로 생성된다. MPEG-4는 이렇게 인위적으로 합성되거나 자연적인 영상 혹은 음향 정보의 디지털 하이브리드 멀티미디어 부호화를 목적으로 하며, 활성화된 혼합 미디어의 내용기반 처리, 상호, 동작 및 사용자의 쉬운 접근 등을 가능하게 한다. SNHC(Synthetic-Natural Hybrid Coding)는 기존의 수동적인 미디어의 전달뿐 아니라 실시간 처리가 가능한 인터랙티브 응용 분야까지 다루고 있으며, 통합된 시공간 부호화 기법을 사용하여 시각, 청각, 2차원, 3차원 컴퓨터 그래픽스 등 다양한 형태의 표준 AV(Aural/Visual) 객체를 처리한다. 표준화는 주로mesh-segmented 비디오 부호화, 구조물 부호화, 객체간의 동기화, AV 객체 스트림의 멀티플렉싱, 혼합 미디어 형태의 시-공간 통합화 등에서 이루어지게 되는데, 이는 궁극적으로 네트워크로 연결되는 가상 환경(Virtual Environment)에서 다수의 사용자가 서로 상호작용 할 수 있는 틀을 제공하는데 있다. 이러한 틀이 제공되면, 대화형 하이브리드 멀티미디어라는 새로운 형태의 정보를 사용함으로써 기존의 미디어로는 경험하지 못하는 다양한 응용과 서비스를 경험할 수 있을 것이다.

  • PDF

Computation of dilute polymer solution flows using BCF-RBFN based method and domain decomposition technique

  • Tran, Canh-Dung;Phillips, David G.;Tran-Cong, Thanh
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • This paper reports the suitability of a domain decomposition technique for the hybrid simulation of dilute polymer solution flows using Eulerian Brownian dynamics and Radial Basis Function Networks (RBFN) based methods. The Brownian Configuration Fields (BCF) and RBFN method incorporates the features of the BCF scheme (which render both closed form constitutive equations and a particle tracking process unnecessary) and a mesh-less method (which eliminates element-based discretisation of domains). However, when dealing with large scale problems, there appear several difficulties: the high computational time associated with the Stochastic Simulation Technique (SST), and the ill-condition of the system matrix associated with the RBFN. One way to overcome these disadvantages is to use parallel domain decomposition (DD) techniques. This approach makes the BCF-RBFN method more suitable for large scale problems.

Estimation of Current Loads on Offshore Vessels Using CFD

  • Yuck Rae-Hyung;Choi Hang-Soon;Hong Sa-Young
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.1
    • /
    • pp.27-37
    • /
    • 2006
  • Current loads acting on offshore vessels are important for predicting the hydrodynamic and structural responses of the vessels. It is also true for analyzing the behavior of moored systems under the action of ocean current. Unfortunately there are few standardized current load coefficients for offshore vessels and it is extremely difficult to be applied to arbitrary hull shapes, if any. Therefore current load coefficients for three hull shapes are calculated in this study using a CFD code, which is well known in the shipbuilding industry. In order to validate the present approach, a typical VLCC is taken as numerical example and resulting current coefficients are compared with experiment together with the OCIMF data. The comparison shows a good agreement in the qualitative sense. Two additional models considered herein are a shuttle tanker and a FPSO under deepwater condition $(WD/T{\geq}6)$. The present numerical approach may be utilized for practical design of offshore vessels.

AN INITIAL VALUE METHOD FOR SINGULARLY PERTURBED SYSTEM OF REACTION-DIFFUSION TYPE DELAY DIFFERENTIAL EQUATIONS

  • Subburayan, V.;Ramanujam, N.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.221-237
    • /
    • 2013
  • In this paper an asymptotic numerical method named as Initial Value Method (IVM) is suggested to solve the singularly perturbed weakly coupled system of reaction-diffusion type second order ordinary differential equations with negative shift (delay) terms. In this method, the original problem of solving the second order system of equations is reduced to solving eight first order singularly perturbed differential equations without delay and one system of difference equations. These singularly perturbed problems are solved by the second order hybrid finite difference scheme. An error estimate for this method is derived by using supremum norm and it is of almost second order. Numerical results are provided to illustrate the theoretical results.

Noise and Vibration Analysis of a Flat Plate by using Modal Expansion Technique (모드 확장 기법을 이용한 평판의 진동.소음 해석)

  • 김관주;이봉노
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.654-662
    • /
    • 1998
  • To predict the radiating noise from the vibrating surface, it is required to know the velocity distribution of vibrating surface exactly as possible as it can. Although it can be obtained by finite element method, their accuracy is limited by theuncertainty of preparing input data such as material propoerties, damping, excitation, and the actual boundary conditions. Experimental values are accurate but are seldom available as many asthe data points compared to FEM mesh. Therefore, hybrid method of experiment and finite element method, called modal expansion technique, is investigated for the preparatin of accurate element method at specified frequencies and for the verification of this scheme, related experiment is performed. In high frequency range above 2000 Hz, piezo-electric material is used as an actuator.

  • PDF