• Title/Summary/Keyword: hybrid membranes

Search Result 104, Processing Time 0.018 seconds

Hybrid Water/Wastewater Treatment Process of Membrane and Photocatalyst (분리막 및 광촉매의 혼성 정수/하수 처리 공정)

  • Park, Jin Yong
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.143-156
    • /
    • 2018
  • In this review article, hybrid water/wastewater treatment processes of membrane and photocatalyst were summarized from papers published in various journals. It included (1) membrane photoreactor (MPR), (2) fouling control of a membrane coupled photocatalytic process, (3) photocatalytic membrane reactors for degradation of organic pollutants, (4) integration of photocatalysis with membrane processes for purification of water, (5) hybrid photocatalysis and ceramic membrane filtration process for humic acid degradation, (6) effect of $TiO_2$ nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration, (7) hybrid photocatalysis/submerged microfiltration membrane system for drinking water treatment, (8) purification of bilge water by hybrid ultrafiltration and photocatalytic processes, and (9) Hybrid water treatment process of membrane and photocatalyst-coated polypropylene bead.

Multicomponent Nanostructured Materials for Separation Membranes

  • Peinemann, Klaus-Viktor
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.11-11
    • /
    • 2004
  • Under the coordination of GKSS a new European project in the field of membrane development started recently. This project focuses on the development of novel nanostructured materials for selective material transport and separation. Two classes of materials will be developed in this project: nanostructured organic/inorganic hybrid materials and functional self-organized supramolecular copolymers.(omitted)

  • PDF

PVDF-TiO2 coated microfiltration membranes: preparation and characterization

  • Shon, H.K.;Puntsho, S.;Vigneswaran, S.;Kandasamy, J.;Kim, J.B.;Park, H.J.;Kim, I.S.
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.193-206
    • /
    • 2010
  • Organic fouling and biofouling pose a significant challenge to the membrane filtration process. Photocatalysis-membrane hybrid system is a novel idea for reducing these membranes fouling however, when $TiO_2 photocatalyst nanoparticles are used in suspension, catalyst recovery is not only imposes an extra step on the process but also significantly contributes to increased membrane resistance and reduced permeate flux. In this study, $TiO_2$ photocatalyst has been immobilized by coating on the microfiltration (MF) membrane surface to minimize organic and microbial fouling. Nano-sized $TiO_2$ was first synthesized by a sol-gel method. The synthesized $TiO_2$ was coated on a Poly Vinyl Difluoride (PVDF) membrane (MF) surface using spray coating and dip coating techniques to obtain hybrid functional composite membrane. The characteristics of the synthesized photocatalyst and a functional composite membrane were studied using numerous instruments in terms of physical, chemical and electrical properties. In comparison to the clean PVDF membrane, the $TiO_2$ coated MF membrane was found more effective in removing methylene blue (20%) and E-coli (99%).

Acridine Fluorescence Behaviors in Different Polymeric Microenvironments Directed by C2-Proton-Acidity of Imidazolium-Based Ionic Liquids

  • Ji, Myoung-Jin;Kim, Jong-Gyu;Shin, Ueon-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2489-2493
    • /
    • 2012
  • A new fluorescent system (acridine/RTIL hybrid gel) confined in the 3D micro-structure of a poly(lactic acid) membrane were prepared from 1-butyl-3-methylimidazolium-based ionic liquids ([bmim]X (X = $SbF_6$, $NTf_2$, Cl); RTILs), poly(lactic acid) (PLA), and acridine via the sol-gel route. SEM images showed that, in the presence of [bmim]$SbF_6$ and [bmim]$NTf_2$, 3D-ly paticulated structures were created inside the PLA membranes and acridine/RTIL hybrid gels were confined in gabs of particulates. However, the use of [bmim]Cl induced the formation of a 3D-ly porous structure containing the hybrid gel of acridine/[bmimCl in the micropores. The three fluorescent systems exhibited different fluorescence behaviors (fluorescence maximum and intensity) depending on the C2-H acidity scale of the RTILs (or their anion type). Acridine gels hybridized with [bmim]$SbF_6$ and [bmim]$NTf_2$ showed blue fluorescence with relative high intensity, whereas the hybrid gel with [bmim]Cl exhibited almost no fluorescence under dry conditions. However, the acridine/[bmim]Cl hybrid system in the micro-porous PLA membrane started to emit fluorescent light under humid conditions and showed a possible response, indicating that it could be applied as a humidity sensor.

Photochromic and thermal properties of poly (Vinyl alcohol)/ $H_6P_2W_{18}O_{62}$ hybrid membranes (폴리비닐알코올 $H_6P_2W_{18}O_{62}$ hybrid membranes의 광색 및 열적 특성)

  • Jian Gong;Kim, Hak-Yong;Lee, Duck-Rae;Bin Ding;Xiangdan Li
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.459-461
    • /
    • 2002
  • A new class of materials based on organic and inorganic species combined at a molecule level has obtained more attention recently[1]. HPA(heteropolyacid) shows unmatched applied perspective in terms of synthesis chemistry, analysis chemistry, biology, medicine and materials science[2]. As a potential photochemical material, the hybrid system of HPA and polymer has been investigated. However, the design and synthesis of heteropolyacid-based hybrids, which are at the forefront of the materials chemistry research, is still in its infancy. (omitted)

  • PDF

Ceramic Based Photocatalytic Membrane for Wastewater Treatment: A Review (폐수처리를 위한 세라믹 기반 광촉매 분리막: 총설)

  • Kwak, Yeonsoo;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.3
    • /
    • pp.181-190
    • /
    • 2022
  • Membrane separation provides various advantages including cost effectiveness and high efficiency over traditional wastewater treatment methods such as flocculation and adsorption. However, the effectiveness of membrane separation greatly declines due to membrane fouling, where pollutants are accumulated on the membrane surface. Among different groups of membranes, ceramic membranes can provide good antifouling properties due to its hydrophilicity and chemical stability. In addition, composite membranes such as graphene oxide modified membranes can help prevent membrane fouling. Recently, hybrid photocatalytic membranes have been proposed as a solution to prevent membrane fouling and provide synergetic effects. Membrane separation can solve the disadvantages of photocatalytic oxidation such as low reutilization rate, while photocatalytic oxidation can help reduce membrane fouling.

Advanced Water Treatment of High Turbidity Source by Hybrid Process of Photocatalyst and Ceramic Microfiltration: Effect of Water Back-flushing Period (광촉매 및 세라믹 정밀여과 혼성공정에 의한 고탁도 원수의 고도정수처리: 물역세척 주기의 영향)

  • Park, Jin Yong;Park, Sung Woo
    • Membrane Journal
    • /
    • v.22 no.4
    • /
    • pp.243-250
    • /
    • 2012
  • The effect of water back-flushing period (filtration time, FT) was investigated in hybrid process of alumina microfiltration and photocatalyst for advanced drinking water treatment in this study, and compared with the previous studies with carbon microfiltration or alumina ultrafiltration membranes. The FT was changed in the range of 2~10 min with fixed 10 sec of BT. Then, the FT effects on resistance of membrane fouling ($R_f$), permeate flux (J) and total permeate volume ($V_T$) were observed during total filtration time of 180 min. As decreasing FT, $R_f$ decreased and J increased as decreasing FT, which was same with the previous results with carbon microfiltration or alumina ultrafiltration membranes. The treatment efficiency of turbidity was high beyond 98.1%, and the effect of FT was not shown on treatment efficiency of turbidity, which was same with the previous result of carbon microfiltration. The treatment efficiency of organic matters was the highest value of 89.6 % at FT 8 min, which was a little higher than those of the previous results, and the effect of FT was not shown on treatment efficiency of organic matters.