• 제목/요약/키워드: hybrid magnet

검색결과 203건 처리시간 0.024초

압축기용 단상 전동기의 회전자 자계구조 변경에 따른 성능에 관한 연구 (A Study on the Performance Improvement of Rotor Structure Modifications in Single-Phase Motors for Compressor Applications)

  • 정태욱
    • 한국산업융합학회 논문집
    • /
    • 제27권2_2호
    • /
    • pp.325-332
    • /
    • 2024
  • Contemporary power systems demand efficient and sustainable technologies. Single-phase induction motors, while widely used, face efficiency challenges due to inherent rotor losses. Proposed solutions include the Line-start Permanent Magnet Synchronous Motor (LSPMSM), leveraging permanent magnets for enhanced energy density but facing demagnetization and cost issues. Alternatively, the Line-start Synchronous Reluctance Motor (LSRM) operates as a hybrid motor without permanent magnets, reducing rotor losses and potentially improving efficiency. This paper focuses on designing an LSRM rotor for air conditioner compressors, analyzing start-up characteristics and efficiency through finite element analysis. A comparative study with single-phase induction motors provides insights for future motor technology selection, balancing efficiency and other requirements.

영구자석형 풍력-디젤 복합발전시스템 모델링 및 운전제어 알고리즘에 관한 연구 (Modeling & Operating Algorithm of Islanding Microgrid with PMSG Wind Turbine and Diesel Generator)

  • 김재언
    • 한국산학기술학회논문지
    • /
    • 제16권9호
    • /
    • pp.6419-6424
    • /
    • 2015
  • 현재 도서지역에 도입되어 운용되고 있는 풍력-디젤 하이브리드 발전시스템에는 풍속과 부하변동에 대하여 적정범위의 전압주파수를 갖는 전력을 공급하기 위하여 고가의 제어가 복잡한 플라이휘일 또는 배터리 에너지저장장치를 설치운영하고 있다. 그러나, 본 논문은 이와 같이 비경제적이고 복잡도가 높은 에너지저장장치를 설치하지 않고, 풍속 및 부하변동에도 안정적인 운전이 가능한 영구자석형(PMSG: Permanent Magnet Synchronous Generator) 풍력-디젤 복합발전시스템으로 구성되는 독립형 마이크로그리드의 운전제어 알고리즘과 모델링 방법을 제안하였다. 먼저, 부하 및 풍속변동에 관계없이 적정범위의 전압주파수를 유지할 수 있는 PMSG 풍력발전기의 운전제어 알고리즘을 제안하고, 이를 바탕으로 한 전가변속 운전이 가능한 PMSG, WT측 컨버터 및 Grid측 컨버터를 모델링하고, 이를 독립형 마이크로그리드에 적용하여 풍속 및 부하변화에 대하여 전압주파수가 적정범위내로 잘 유지됨을 입증하였다.

LM-FNN 제어기에 의한 IPMSM의 고성능 속도제어 (High Performance Speed Control of IPMSM with LM-FNN Controller)

  • 남수명;최정식;정동화
    • 전력전자학회논문지
    • /
    • 제11권1호
    • /
    • pp.29-37
    • /
    • 2006
  • 본 논문에서는 LM-FNN(learning Mechanism-Fuzzy Neural Network) 제어기를 이용하여 IPMSM 드라이브의 고성능 속도를 제어한다. 고성능제어를 위하여 신경회로망과 퍼지제어를 혼합 적용한 FNN을 설계한고 더욱 성능을 개선하기 위하여 학습 메카니즘을 이용하여 FNN 제어기의 파라미터를 갱신시킨다. 그리고 ANN(Artificial Neural Network)을 이용하여 IPMSM 드라이브의 속도 추정기법을 제시한다. 추정속도의 타당성을 입증하기 위하여 시스템을 구성하여 제어특성을 분석한다. 그리고 추정된 속도를 지령속도와 비교하여 전류제어와 공간벡터 PWM을 통하여 IPMSM의 속도를 제어한다. 본 연구에서 제시한 LM-FNN과 ANN 제어기의 제어특성과 추정성능을 분석하고 그 결과를 제시한다.

50KW 터보제너레이터용 가스터빈 엔진의 설계점/ 탈설계/과도성능해석 (On/Off-Design/Transient Analysis of a 50KW Turbogenerator Gas Turbine Engine)

  • 김수용;박무룡;조수용
    • 연구논문집
    • /
    • 통권27호
    • /
    • pp.87-99
    • /
    • 1997
  • Present paper describes on/off design performance of a 50KW turbogenerator gas turbine engine for hybrid vehicle application. For optimum design point selection, relevant parameter study is carried out. The turbogenerator gas turbine engine for a hybrid vehicle is expected to be designed for maximum fuel economy, ultra low emissions, and very low cost. Compressor, combustor, turbine, and permanent-magnet generator will be mounted on a single high speed (82,000 rpm) shaft that will be supported on air bearings. As the generator is built into the shaft, gearbox and other moving parts become unnecessary and thus will increase the system's reliability and reduce the manufacturing cost. The engine has a radial compressor and turbine with design point pressure ratio of 4.0. This pressure ratio was set based on calculation of specific fuel consumption and specific power variation with pressure ratio. For the given turbine inlet temperature, a rather conservative value of $1100^\circK$ was selected. Designed mass flow rate was 0.5 kg/sec. Parametric study of the cycle indicates that specific work and efficiency increase at a given pressure ratio and turbine inlet temperature. Off design analysis shows that the gas turbine system reaches self operating condition at N/$N_{DP}$ = 0.53. Bleeding air for turbine stator cooling is omitted considering low TIT and for a simple geometric structure. Various engine performance simulations including, ambient temperature influence, surging at part load condition. Transient analysis were performed to secure the optimum engine operating characteristics. Surge margin throughout the performance analysis were maintained to be over 80% approximately. Validation of present results are yet to be seen as the performance tests are scheduled by the end of 1998 for comparison.

  • PDF

An Off-line Maximum Torque Control Strategy of Wound Rotor Synchronous Machine with Nonlinear Parameters

  • Wang, Qi;Lee, Heon-Hyeong;Park, Hong-Joo;Kim, Sung-Il;Lee, Geun-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.609-617
    • /
    • 2016
  • Belt-driven Starter Generator (BSG) differs from other mild hybrid systems as the crankshaft of vehicle are not run off. Motor permits a low-cost method of adding mild hybrid capabilities such as start-stop, power assist, and mild levels of regenerative braking. Wound rotor synchronous motor (WRSM) could be adopted in BSG system for HEV e-Assisted application instead of the interior permanent magnet synchronous motor (IPMSM). In practice, adequate torque is indispensable for starter assist system, and energy conversion should be taken into account for the HEV or EV as well. Particularly, flux weakening control is possible to realize by adjusting both direct axis components of current and field current in WRSM. Accordingly, this paper present an off-line current acquisition algorithm that can reasonably combine the stator and field current to acquire the maximum torque, meanwhile the energy conversion is taken into consideration by losses. Besides, on account of inductance influence by non-uniform air gap around rotor, nonlinear inductances and armature flux linkage against current variation are proposed to guarantee the results closer to reality. A computer-aided method for proposed algorithm are present and results are given in form of the Look-up table (LUT). The experiment shows the validity of algorithm.

하이브리드 타입 초소형 가스터빈엔진 개발 및 초도 시운전 (Preliminary Study of Hybrid Micro Gas Turbine Engine)

  • 서준혁;최주찬;권길성;백제현
    • 한국유체기계학회 논문집
    • /
    • 제19권1호
    • /
    • pp.24-30
    • /
    • 2016
  • In this study, a 2W micro-gas turbine engine was designed using micro-electro-mechanical systems (MEMS) technology, and experimental investigations of its potential under actual combustion conditions were performed. A micro-gas turbine (MGT) contains a turbo-charger, combustor, and generator. Compressor and turbine blades, and generator coil were manufactured using MEMS technology. The shaft was supported by a precision computer numerical control (CNC) machined static air bearing, and a permanent magnet was attached to the end of the shaft for generation. A heat transfer analysis found that the cooling effect of the air bearing and compressor was sufficient to cover the combustor's high temperature, which was verified in an actual experiment. The generator performance test showed that it can generate 2W at design rotational speed. Prototype micro-gas turbine generated maximum 1 mW electric power and lasted up to 15 minutes.

자성유체를 이용한 스퀴즈 필름 댐퍼의 동특성 동정 (Identification of Dynamic property of Squeeze Film Damper Using Magnetic Fluid)

  • 안영공;하종용;김용한;안경관;양보석;삼하신
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.227-230
    • /
    • 2005
  • The paper presents the identification of dynamic property of a rotor system with a squeeze film damper (SFD) using magnetic fluid. An electromagnet is installed in the inner damper of the SFD. The magnetic fluid is well known as a functional fluid. Its rheological property can be changed by controlling the applied current to the fluid and the fluid can be used as lubricant. Basically, the proposed SFD has the characteristics of a conventional SFD without an applied current, while the damping and stiffness properties change according to the variation of the applied electric current. Therefore, when the applied current is changed, the whirling vibration of the rotor system can be effectively reduced. The clustering-based hybrid evolutionary algorithm (CHEA) is used to identify linear stiffness and damping coefficients of the SFD based on measured unbalance responses.

  • PDF

NFC와 ANN을 이용한 IPMSM 드라이브의 속도 추정 및 제어 (Speed Estimation and Control of IPMSM Drive using NFC and ANN)

  • 이정철;이홍균;정동화
    • 전력전자학회논문지
    • /
    • 제10권3호
    • /
    • pp.282-289
    • /
    • 2005
  • 본 논문에서는 NFC(Neuro-Fuzzy Controller)와 ANN(Artificial Neural network) 제어기를 이용한 IPMSM의 속도 제어 및 추정을 제시한다. PI 제어기에서 나타나는 문제점을 해결하기 위하여 신경회로망과 퍼지제어를 혼합적용한 NFC를 설계한다. 신경회로망의 고도의 적응제어와 퍼지 제어기의 강인성 제어의 장점들을 접목한다. 다음은 ANN을 이용하여 IPMSM 드라이브의 속도 추정기법을 제시한다. 2층 구조를 가진 신경회로망에 BPA(Back Propagation Algorithm)를 적용하여 IPMSM 드라이브의 속도를 추정한다. 추정속도의 타당성을 입증하기 위하여 시스템을 구성하여 제어특성을 분석한다.

LM-FNN 제어기에 의한 IPMSM 드라이브의 최대토크 제어 (Maximum Torque Control of IPMSM Drive with LM-FNN Controller)

  • 남수명;최정식;정동화
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권2호
    • /
    • pp.89-97
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. The paper is proposed maximum torque control of IPMSM drive using learning mechanism-fuzzy neural network(LM-FNN) controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_{d}$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using LM-FNN controller and ANN controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of IPMSM using LM-FNN and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled LM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the LM-FNN and ANN controller.

모터 및 배터리 용량에 따른 전기스쿠터 성능해석 (The Analysis of a Electric Scooter's Performance through Motor and Battery Capacity Changing)

  • 길범수;김강출
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.7-13
    • /
    • 2011
  • The climate change due to the increased consumption with fossil fuel and rise of the oil price have been serious global issues. Automobile industry consumes 30% of the oil every year and causes air pollution and global warming by the exhaust emissions and carbon dioxide ($CO_2$). The demand of two-wheeled vehicle increases every year due to the parking and traffic problem caused by the increased automobiles in the urban area. Approximately 50,000,000 two-wheeled vehicles were produced in 2008. The development and sales of the hybrid two-wheeled vehicle industry become active due to its increased market demands. In this paper, the change of the motor and battery efficiency, driving distance, hill climbing ability with the change of the motor capacity was analyzed. Simulation of the peculiarities in urban driving schedule(World-wide Motorcycle Test Cycle(WMTC), Manhattan driving schedule), constant speed(10 km/h, 35 km/h) of small electronic two-wheeled vehicle was also carried out. Through the simulation result, appropriate capacities of the motor and battery for urban driving was acquired.