• Title/Summary/Keyword: hybrid in-memory

Search Result 250, Processing Time 0.039 seconds

Locally weighted linear regression prefetching method for hybrid memory system (하이브리드 메모리 시스템의 지역 가중 선형회귀 프리페치 방법)

  • Tang, Qian;Kim, Jeong-Geun;Kim, Shin-Dug
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.12-15
    • /
    • 2020
  • Data access characteristics can directly affect the efficiency of the system execution. This research is to design an accurate predictor by using historical memory access information, where highly accessible data can be migrated from low-speed storage (SSD/HHD) to high-speed memory (Memory/CPU Cache) in advance, thereby reducing data access latency and further improving overall performance. For this goal, we design a locally weighted linear regression prefetch scheme to cope with irregular access patterns in large graph processing applications for a DARM-PCM hybrid memory structure. By analyzing the testing result, the appropriate structural parameters can be selected, which greatly improves the cache prefetching performance, resulting in overall performance improvement.

Improving Flash Translation Layer for Hybrid Flash-Disk Storage through Sequential Pattern Mining based 2-Level Prefetching Technique (하이브리드 플래시-디스크 저장장치용 Flash Translation Layer의 성능 개선을 위한 순차패턴 마이닝 기반 2단계 프리패칭 기법)

  • Chang, Jae-Young;Yoon, Un-Keum;Kim, Han-Joon
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.4
    • /
    • pp.101-121
    • /
    • 2010
  • This paper presents an intelligent prefetching technique that significantly improves performance of hybrid fash-disk storage, a combination of flash memory and hard disk. Since flash memory embedded in a hybrid device is much faster than hard disk in terms of I/O operations, it can be utilized as a 'cache' space to improve system performance. The basic strategy for prefetching is to utilize sequential pattern mining, with which we can extract the access patterns of objects from historical access sequences. We use two techniques for enhancing the performance of hybrid storage with prefetching. One of them is to modify a FAST algorithm for mapping the flash memory. The other is to extend the unit of prefetching to a block level as well as a file level for effectively utilizing flash memory space. For evaluating the proposed technique, we perform the experiments using the synthetic data and real UCC data, and prove the usability of our technique.

Low-power heterogeneous uncore architecture for future 3D chip-multiprocessors

  • Dorostkar, Aniseh;Asad, Arghavan;Fathy, Mahmood;Jahed-Motlagh, Mohammad Reza;Mohammadi, Farah
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.759-773
    • /
    • 2018
  • Uncore components such as on-chip memory systems and on-chip interconnects consume a large amount of energy in emerging embedded applications. Few studies have focused on next-generation analytical models for future chip-multiprocessors (CMPs) that simultaneously consider the impacts of the power consumption of core and uncore components. In this paper, we propose a convex-optimization approach to design heterogeneous uncore architectures for embedded CMPs. Our convex approach optimizes the number and placement of memory banks with different technologies on the memory layer. In parallel with hybrid memory architecting, optimizing the number and placement of through silicon vias as a viable solution in building three-dimensional (3D) CMPs is another important target of the proposed approach. Experimental results show that the proposed method outperforms 3D CMP designs with hybrid and traditional memory architectures in terms of both energy delay products (EDPs) and performance parameters. The proposed method improves the EDPs by an average of about 43% compared with SRAM design. In addition, it improves the throughput by about 7% compared with dynamic RAM (DRAM) design.

Nonvolatile Flexible Bistable Organic Memory (BOM) Device with Au nanoparticles (NPs) embedded in a Conducting poly N-vinylcarbazole (PVK) Colloids Hybrid

  • Son, Dong-Ick;Kwon, Byoung-Wook;Park, Dong-Hee;Yang, Jeong-Do;Choi, Won-Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.440-440
    • /
    • 2011
  • We report on the non-volatile memory characteristics of a bistable organic memory (BOM) device with Au nanoparticles (NPs) embedded in a conducting poly N-vinylcarbazole (PVK) colloids hybrid layer deposited on flexible polyethylene terephthalate (PET) substrates. Transmission electron microscopy (TEM) images show the Au nanoparticles distributed isotropically around the surface of a PVK colloid. The average induced charge on Au nanoparticles, estimated using the C-V hysteresis curve, was large, as much as 5 holes/NP at a sweeping voltage of ${\pm}3$ V. The maximum ON/OFF ratio of the current bistability in the BOM devices was as large as $1{\times}105$. The cycling endurance tests of the ON/OFF switching exhibited a high endurance of above $1.5{\times}105$ cycles and a high ON/OFF ratio of ~105 could be achieved consistently even after quite a long retention time of more than $1{\times}106$ s.

  • PDF

Modeling and Analysis of High Speed Serial Links (SerDes) for Hybrid Memory Cube Systems (하이브리드 메모리 큐브 (HMC) 시스템의 고속 직렬 링크 (SerDes)를 위한 모델링 및 성능 분석)

  • Jeon, Dong-Ik;Chung, Ki-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.4
    • /
    • pp.193-204
    • /
    • 2017
  • Various 3D-stacked DRAMs have been proposed to overcome the memory wall problem. Hybrid Memory Cube (HMC) is a true 3D-stacked DRAM with stacked DRAM layers on top of a logic layer. The logic die is mainly used to implement a memory controller for HMC, and it is connected through a high speed serial link called SerDes with a host that is either a processor or another HMC. In HMC, the serial link is crucial for both performance and power consumption. Therefore, it is important that the link is configured properly so that the required performance should be satisfied while the power consumption is minimized. In this paper, we propose a HMC system model included the high speed serial link to estimate performance accurately. Since the link modeling strictly follows the link flow control mechanism defined in the HMC spec, the actual HMC performance can be estimated accurately with respect to each link configuration. Various simulations are conducted in order to deduce the correlation between the HMC performance and the link configuration with regard to memory utilization. It is confirmed that there is a strong correlation between the achievable maximum performance of HMC and the link configuration in terms of both bandwidth and latency. Therefore, it is possible to find the best link configuration when the required HMC performance is known in advance, and finding the best configuration will lead to significant power saving while the performance requirement is satisfied.

Hybrid Main Memory based Buffer Cache Scheme by Using Characteristics of Mobile Applications (모바일 애플리케이션의 특성을 이용한 하이브리드 메모리 기반 버퍼 캐시 정책)

  • Oh, Chansoo;Kang, Dong Hyun;Lee, Minho;Eom, Young Ik
    • Journal of KIISE
    • /
    • v.42 no.11
    • /
    • pp.1314-1321
    • /
    • 2015
  • Mobile devices employ buffer cache mechanisms, just as in computer systems such as desktops or servers, to mitigate the performance gap between main memory and secondary storage. However, DRAM has a problem in that it accelerates battery consumption by performing refresh operations periodically to maintain the stored data. In this paper, we propose a novel buffer cache scheme to increase the battery lifecycle in mobile devices based on a hybrid main memory architecture consisting of DRAM and non-volatile PCM. We also suggest a new buffer cache policy that allocates buffers based on process states to optimize the performance and endurance of PCM. In particular, our algorithm allocates each page to the appropriate position corresponding to the state of the application that owns the page, and tries to ensure a rapid response of foreground applications even with a small amount of DRAM memory. The experimental results indicate that the proposed scheme reduces the elapsed time of foreground applications by 58% on average and power consumption by 23% on average without negatively impacting the performance of background applications.

A Study on Direct Cache-to-Cache Transfer for Hybrid Cache Architecture to Reduce Write Operations (쓰기 횟수 감소를 위한 하이브리드 캐시 구조에서의 캐시간 직접 전송 기법에 대한 연구)

  • Juhee Choi
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.65-70
    • /
    • 2024
  • Direct cache-to-cache transfer has been studied to reduce the latency and bandwidth consumption related to the shared data in multiprocessor system. Even though these studies lead to meaningful results, they assume that caches consist of SRAM. For example, if the system employs the non-volatile memory, the one of the most important parts to consider is to decrease the number of write operations. This paper proposes a hybrid write avoidance cache coherence protocol that considers the hybrid cache architecture. A new state is added to finely control what is stored in the non-volatile memory area, and experimental results showed that the number of writes was reduced by about 36% compared to the existing schemes.

  • PDF

Designing Hybrid HDD using SLC/MLC combined Flash Memory (SLC/MLC 혼합 플래시 메모리를 이용한 하이브리드 하드디스크 설계)

  • Hong, Seong-Cheol;Shin, Dong-Kun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.7
    • /
    • pp.789-793
    • /
    • 2010
  • Recently, flash memory-based non-volatile cache (NVC) is emerging as an effective solution to enhance both I/O performance and energy consumption of storage systems. To get significant performance and energy gains by NVC, it would be better to use multi-level-cell (MLC) flash memories since it can provide a large capacity of NVC with low cost. However, the number of available program/erase cycles of MLC flash memory is smaller than that of single-level-cell (SLC) flash memory limiting the lifespan of NVC. To overcome such a limitation, SLC/MLC combined flash memory is a promising solution for NVC. In this paper, we propose an effective management scheme for heterogeneous SLC and MLC regions of the combined flash memory.

Self sustained n-type memory transistor devices based on natural cellulose paper fibers

  • Martins, R.;Barquinha, P.;Pereira, L.;Goncalves, G.;Ferreira, I.;Fortunato, E.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1044-1046
    • /
    • 2009
  • Here we report the architecture for a non-volatile n-type memory paper field-effect transistor. The device is built using the hybrid integration of natural cellulose fibers (pine and eucalyptus fibers embedded in an ionic resin), which act simultaneously as substrate and gate dielectric, with amorphous GIZO and IZO oxides as gate and channel layers, respectively. This is complemented by the use of continuous patterned metal layers as source/drain electrodes.

  • PDF

Fabrication of PMMA-HfOx Organic-Inorganic Hybrid Resistive Switching Memory (PMMA-HfOx 유-무기 하이브리드 저항변화 메모리 제작)

  • Baek, Il-Jin;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.135-140
    • /
    • 2016
  • In this study, we developed the solution-processed PMMA-$HfO_x$ hybrid ReRAM devices to overcome the respective drawbacks of organic and inorganic materials. The performances of PMMA-$HfO_x$ hybrid ReRAM were compared to those of PMMA- and $HfO_x$-based ReRAMs. Bipolar resistive switching behavior was observed from these ReRAMs. The PMMA-$HfO_x$ hybrid ReRAMs showed a larger operation voltage margin and memory window than PMMA-based and $HfO_x$-based ReRAMs. The reliability and electrical instability of ReRAMs were remarkably improved by blending the $HfO_x$ into PMMA. An Ohmic conduction path was commonly generated in the LRS (low resistance state). In HRS (high resistance state), the PMMA-based ReRAM showed SCLC (space charge limited conduction). the PMMA-$HfO_x$ hybrid ReRAM and $HfO_x$-based ReRAM revealed the Pool-Frenkel conduction. As a result of flexibility test, serious defects were generated in $HfO_x$ film deposited on PI (polyimide) substrate. On the other hand, the PMMA and PMMA-$HfO_x$ films showed an excellent flexibility without defect generation.