• Title/Summary/Keyword: hybrid genetic algorithms

Search Result 165, Processing Time 0.025 seconds

Hybrid AI Approach to Knowledge Management by Integrating Case-Based Reasoning and Genetic Algorithms (사례기반추론과 유전자 알고리즘을 결합한 지식경영 방법론에 관한 연구: 신용평가문제를 중심으로)

  • 이건창;신경식
    • Journal of Information Technology Application
    • /
    • v.1
    • /
    • pp.3-27
    • /
    • 1999
  • 최근 기업의 경쟁력 강화를 위하여 기업내의 지식을 중요한 자원으로 인식하고 활용하는 지식경영의 필요성이 강력히 대두되고 있다. 이러한 지식경영의 주요 활동을 지원할 구체적인 방법론으로 정보기술의 활용 방안이 다각도로 제시되고 있으나, 실제적인 연구는 아직 초보단계에 있다고 하겠다. 본 연구에서는 지식의 생성, 저장, 그리고 추출 및 활용이라는 지식경영의 주요 과제를 효과적으로 해결하는 방안으로써 인공지능기법인 사례기반추론과 유전자 알고리즘을 이용한 통합방법론을 제시한다. 본 연구에서 제시하고 있는 방법론은 생성된 지식의 표현, 저장, 그리고 추출에 사례기반추론기법을 활용하였다는 점 이외에 다음과 같은 두 가지 특징을 가지고 있다. 첫째로는, 해결하고자 하는 문제에 가장 적절한 과거 지식이 추출되도록 함으로써 활용 효과를 높일 수 있도록 하였다는 점이다. 둘째로는, 환경의 변화를 반영할 수 있는 방안을 제시하고 있다는 점이다. 본 인공지능 통합방법론은 신용평가부서의 지식관리모형을 통해 검증해 본 결과 그 효과가 입증되었다.

  • PDF

An Enhanced Simulated Annealing Algorithm for the Set Covering Problem (Set Covering 문제의 해법을 위한 개선된 Simulated Annealing 알고리즘)

  • Lee, Hyun-Nam;Han, Chi-Geun
    • IE interfaces
    • /
    • v.12 no.1
    • /
    • pp.94-101
    • /
    • 1999
  • The set covering(SC) problem is the problem of covering all the rows of an $m{\times}n$ matrix of ones and zeros by a subset of columns with a minimal cost. It has many practical applications of modeling of real world problems. The SC problem has been proven to be NP-complete and many algorithms have been presented to solve the SC problem. In this paper we present hybrid simulated annealing(HSA) algorithm based on the Simulated Annealing(SA) for the SC problem. The HSA is an algorithm which combines SA with a crossover operation in a genetic algorithm and a local search method. Our experimental results show that the HSA obtains better results than SA does.

  • PDF

Extended hybrid genetic algorithm for solving Travelling Salesman Problem with sorted population (Traveling Salesman 문제 해결을 위한 인구 정렬 하이브리드 유전자 알고리즘)

  • Yugay, Olga;Na, Hui-Seong;Lee, Tae-Kyung;Ko, Il-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2269-2275
    • /
    • 2010
  • The performance of Genetic Algorithms (GA) is affected by various factors such as parameters, genetic operators and strategies. The traditional approach with random initial population is efficient however the whole initial population may contain many infeasible solutions. Thus it would take a long time for GA to produce a good solution. The GA have been modified in various ways to achieve faster convergence and it was particularly recognized by researchers that initial population greatly affects the performance of GA. This study proposes modified GA with sorted initial population and applies it to solving Travelling Salesman Problem (TSP). Normally, the bigger the initial the population is the more computationally expensive the calculation becomes with each generation. New approach allows reducing the size of the initial problem and thus achieve faster convergence. The proposed approach is tested on a simulator built using object-oriented approach and the test results prove the validity of the proposed method.

Conflicts in Overlay Environments: Inefficient Equilibrium and Incentive Mechanism

  • Liao, Jianxin;Gong, Jun;Jiang, Shan;Li, Tonghong;Wang, Jingyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2286-2309
    • /
    • 2016
  • Overlay networks have been widely deployed upon the Internet by Service Providers (SPs) to provide improved network services. However, the interaction between each overlay and traffic engineering (TE) as well as the interaction among co-existing overlays may occur. In this paper, we adopt both non-cooperative and cooperative game theory to analyze these interactions, which are collectively called hybrid interaction. Firstly, we model a situation of the hybrid interaction as an n+1-player non-cooperative game, in which overlays and TE are of equal status, and prove the existence of Nash equilibrium (NE) for this game. Secondly, we model another situation of the hybrid interaction as a 1-leader-n-follower Stackelberg-Nash game, in which TE is the leader and co-existing overlays are followers, and prove that the cost at Stackelberg-Nash equilibrium (SNE) is at least as good as that at NE for TE. Thirdly, we propose a cooperative coalition mechanism based on Shapley value to overcome the inherent inefficiency of NE and SNE, in which players can improve their performance and form stable coalitions. Finally, we apply distinct genetic algorithms (GA) to calculate the values for NE, SNE and the assigned cost for each player in each coalition, respectively. Analytical results are confirmed by the simulation on complex network topologies.

Reliability Optimization of Urban Transit Brake System For Efficient Maintenance (효율적 유지보수를 위한 도시철도 전동차 브레이크의 시스템 신뢰도 최적화)

  • Bae, Chul-Ho;Kim, Hyun-Jun;Lee, Jung-Hwan;Kim, Se-Hoon;Lee, Ho-Yong;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.26-35
    • /
    • 2007
  • The vehicle of urban transit is a complex system that consists of various electric, electronic, and mechanical equipments, and the maintenance cost of this complex and large-scale system generally occupies sixty percent of the LCC (Life Cycle Cost). For reasonable establishing of maintenance strategies, safety security and cost limitation must be considered at the same time. The concept of system reliability has been introduced and optimized as the key of reasonable maintenance strategies. For optimization, three preceding studies were accomplished; standardizing a maintenance classification, constructing RBD (Reliability Block Diagram) of VVVF (Variable Voltage Variable Frequency) urban transit, and developing a web based reliability evaluation system. Historical maintenance data in terms of reliability index can be derived from the web based reliability evaluation system. In this paper, we propose applying inverse problem analysis method and hybrid neuro-genetic algorithm to system reliability optimization for using historical maintenance data in database of web based system. Feed-forward multi-layer neural networks trained by back propagation are used to find out the relationship between several component reliability (input) and system reliability (output) of structural system. The inverse problem can be formulated by using neural network. One of the neural network training algorithms, the back propagation algorithm, can attain stable and quick convergence during training process. Genetic algorithm is used to find the minimum square error.

An Improved Genetic Algorithm for Integrated Planning and Scheduling Algorithm Considering Tool Flexibility and Tool Constraints (공구유연성과 공구관련제약을 고려한 통합공정일정계획을 위한 유전알고리즘)

  • Kim, Young-Nam;Ha, Chunghun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.111-120
    • /
    • 2017
  • This paper proposes an improved standard genetic algorithm (GA) of making a near optimal schedule for integrated process planning and scheduling problem (IPPS) considering tool flexibility and tool related constraints. Process planning involves the selection of operations and the allocation of resources. Scheduling, meanwhile, determines the sequence order in which operations are executed on each machine. Due to the high degree of complexity, traditionally, a sequential approach has been preferred, which determines process planning firstly and then performs scheduling independently based on the results. The two sub-problems, however, are complicatedly interrelated to each other, so the IPPS tend to solve the two problems simultaneously. Although many studies for IPPS have been conducted in the past, tool flexibility and capacity constraints are rarely considered. Various meta-heuristics, especially GA, have been applied for IPPS, but the performance is yet satisfactory. To improve solution quality against computation time in GA, we adopted three methods. First, we used a random circular queue during generation of an initial population. It can provide sufficient diversity of individuals at the beginning of GA. Second, we adopted an inferior selection to choose the parents for the crossover and mutation operations. It helps to maintain exploitation capability throughout the evolution process. Third, we employed a modification of the hybrid scheduling algorithm to decode the chromosome of the individual into a schedule, which can generate an active and non-delay schedule. The experimental results show that our proposed algorithm is superior to the current best evolutionary algorithms at most benchmark problems.

Optimal Selection of Classifier Ensemble Using Genetic Algorithms (유전자 알고리즘을 이용한 분류자 앙상블의 최적 선택)

  • Kim, Myung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.99-112
    • /
    • 2010
  • Ensemble learning is a method for improving the performance of classification and prediction algorithms. It is a method for finding a highly accurateclassifier on the training set by constructing and combining an ensemble of weak classifiers, each of which needs only to be moderately accurate on the training set. Ensemble learning has received considerable attention from machine learning and artificial intelligence fields because of its remarkable performance improvement and flexible integration with the traditional learning algorithms such as decision tree (DT), neural networks (NN), and SVM, etc. In those researches, all of DT ensemble studies have demonstrated impressive improvements in the generalization behavior of DT, while NN and SVM ensemble studies have not shown remarkable performance as shown in DT ensembles. Recently, several works have reported that the performance of ensemble can be degraded where multiple classifiers of an ensemble are highly correlated with, and thereby result in multicollinearity problem, which leads to performance degradation of the ensemble. They have also proposed the differentiated learning strategies to cope with performance degradation problem. Hansen and Salamon (1990) insisted that it is necessary and sufficient for the performance enhancement of an ensemble that the ensemble should contain diverse classifiers. Breiman (1996) explored that ensemble learning can increase the performance of unstable learning algorithms, but does not show remarkable performance improvement on stable learning algorithms. Unstable learning algorithms such as decision tree learners are sensitive to the change of the training data, and thus small changes in the training data can yield large changes in the generated classifiers. Therefore, ensemble with unstable learning algorithms can guarantee some diversity among the classifiers. To the contrary, stable learning algorithms such as NN and SVM generate similar classifiers in spite of small changes of the training data, and thus the correlation among the resulting classifiers is very high. This high correlation results in multicollinearity problem, which leads to performance degradation of the ensemble. Kim,s work (2009) showedthe performance comparison in bankruptcy prediction on Korea firms using tradition prediction algorithms such as NN, DT, and SVM. It reports that stable learning algorithms such as NN and SVM have higher predictability than the unstable DT. Meanwhile, with respect to their ensemble learning, DT ensemble shows the more improved performance than NN and SVM ensemble. Further analysis with variance inflation factor (VIF) analysis empirically proves that performance degradation of ensemble is due to multicollinearity problem. It also proposes that optimization of ensemble is needed to cope with such a problem. This paper proposes a hybrid system for coverage optimization of NN ensemble (CO-NN) in order to improve the performance of NN ensemble. Coverage optimization is a technique of choosing a sub-ensemble from an original ensemble to guarantee the diversity of classifiers in coverage optimization process. CO-NN uses GA which has been widely used for various optimization problems to deal with the coverage optimization problem. The GA chromosomes for the coverage optimization are encoded into binary strings, each bit of which indicates individual classifier. The fitness function is defined as maximization of error reduction and a constraint of variance inflation factor (VIF), which is one of the generally used methods to measure multicollinearity, is added to insure the diversity of classifiers by removing high correlation among the classifiers. We use Microsoft Excel and the GAs software package called Evolver. Experiments on company failure prediction have shown that CO-NN is effectively applied in the stable performance enhancement of NNensembles through the choice of classifiers by considering the correlations of the ensemble. The classifiers which have the potential multicollinearity problem are removed by the coverage optimization process of CO-NN and thereby CO-NN has shown higher performance than a single NN classifier and NN ensemble at 1% significance level, and DT ensemble at 5% significance level. However, there remain further research issues. First, decision optimization process to find optimal combination function should be considered in further research. Secondly, various learning strategies to deal with data noise should be introduced in more advanced further researches in the future.

The Analysis and Design of Advanced Neurofuzzy Polynomial Networks (고급 뉴로퍼지 다항식 네트워크의 해석과 설계)

  • Park, Byeong-Jun;O, Seong-Gwon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.3
    • /
    • pp.18-31
    • /
    • 2002
  • In this study, we introduce a concept of advanced neurofuzzy polynomial networks(ANFPN), a hybrid modeling architecture combining neurofuzzy networks(NFN) and polynomial neural networks(PNN). These networks are highly nonlinear rule-based models. The development of the ANFPN dwells on the technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks and genetic algorithms. NFN contributes to the formation of the premise part of the rule-based structure of the ANFPN. The consequence part of the ANFPN is designed using PNN. At the premise part of the ANFPN, NFN uses both the simplified fuzzy inference and error back-propagation learning rule. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. As the consequence structure of ANFPN, PNN is a flexible network architecture whose structure(topology) is developed through learning. In particular, the number of layers and nodes of the PNN are not fixed in advance but is generated in a dynamic way. In this study, we introduce two kinds of ANFPN architectures, namely the basic and the modified one. Here the basic and the modified architecture depend on the number of input variables and the order of polynomial in each layer of PNN structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the ANFPN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed ANFPN can produce the model with higher accuracy and predictive ability than any other method presented previously.

Crack Identification Based on Synthetic Artificial Intelligent Technique (통합적 인공지능 기법을 이용한 결함인식)

  • Sim, Mun-Bo;Seo, Myeong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2062-2069
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

Crack identification based on synthetic artificial intelligent technique (통합적 인공지능 기법을 이용한 결함인식)

  • Shim, Mun-Bo;Suh, Myung-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.182-188
    • /
    • 2001
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses synthetic artificial intelligent technique, that is, Adaptive-Network-based Fuzzy Inference System(ANFIS) solved via hybrid learning algorithm(the back-propagation gradient descent and the least-squares method) are used to learn the input(the location and depth of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this ANFIS and a continuous evolutionary algorithm(CEA), it is possible to formulate the inverse problem. CEAs based on genetic algorithms work efficiently for continuous search space optimization problems like a parameter identification problem. With this ANFIS, CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising.

  • PDF