• Title/Summary/Keyword: hybrid genetic algorithm

Search Result 416, Processing Time 0.028 seconds

Regrouping Service Sites: a Genetic Approach using a Voronoi Diagram (서비스 위치 그룹핑을 위한 보로노이 다이어그램 기반의 유전자알고리듬)

  • Seo, Jeong-Yeon;Park, Sang-Min;Jeong, In-Jae;Kim, Deok-Soo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.179-187
    • /
    • 2005
  • In this paper, we consider the problem of regrouping a number of service sites into a smaller number of service sites called centers. Each service site is represented as a point in the plane and has an associated value of service demand. We aim to group the sites so that each group has the balanced service demand and the sum of distances from the sites in the group to their corresponding center is minimized. To solve this problem, we propose a hybrid genetic algorithm that is combined with Voronoi diagrams. We provide a variety of experimental results by changing the weights of the two factors: service demands and distances. Our hybrid algorithm finds better solutions in a shorter computation time in comparison with a pure genetic algorithm.

  • PDF

A Study on the Wind Turbine Blade Optimization and Pitch Control Using the Hybrid Genetic Algorithm (혼합형 유전 알고리즘을 이용한 풍력발전기용 블레이드 최적설계 및 피치제어에 관한 연구)

  • Kang, Shin-Jae;Kim, Ki-Wan;Ryu, Ki-Wahn;Song, Ki-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.7-13
    • /
    • 2002
  • This paper introduced a new hybrid genetic algorithm, verified its performance, and applied it to the optimization of blade design and pitch control for 30kW pitch-controlled variable-speed horizontal-axis wind turbine system to determine the optimum blade chord and twist distributions that maximize the energy production for a given Weibull wind distribution and the optimum blade pitch angles that maintain constant power output.

Sustainable Closed-loop Supply Chain Model for Mobile Phone: Hybrid Genetic Algorithm Approach (모바일폰을 위한 지속가능한 폐쇄루프 공급망 모델: 혼합유전알고리즘 접근법)

  • Yun, YoungSu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.115-127
    • /
    • 2020
  • In this paper, a sustainable close-loop supply chain (SCLSC) model is proposed for effectively managing the production, distribution and handling process of mobile phone. The proposed SCLSC model aims at maximizing total profit as economic factor, minimizing total CO2 emission amount as environmental factor, and maximizing social influence as social factor in order to reinforce sustainability in it. Since these three factors are represented as each objective function in modeling, the proposed SCLSC model can be taken into consideration as a multi-objective optimization problem and solved using a hybrid genetic algorithm (HGA) approach. In numerical experiment, three different scales of the SCLSC model are presented and the efficiency of the HGA approach is proved using various measures of performance.

Supply Chain Network Model Considering Supply Disruption in Assembly Industry: Hybrid Genetic Algorithm Approach (조립산업에서 공급 붕괴를 고려한 공급망 네트워크모델: 혼합유전알고리즘 접근법)

  • Anudari, Chuluunsukh;Yun, YoungSu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.3
    • /
    • pp.9-22
    • /
    • 2021
  • This study proposes a supply chain network (SCN) model considering supply disruption in assembly industry. For supply disruption, supplier disruption and its route disruption are simultaneously taken into consideration in the SCN model. With the simultaneous consideration, the SCN model can achieve its flexibility and efficiency. A mathematical formulation is suggested for representing the SCN model, and a proposed hybrid genetic algorithm (pro-HGA) is used for implementing the mathematical formulation. In numerical experiment, the performance of the pro-HGA approach is compared with those of some conventional approaches using the SCN models with various scales, and a sensitivity analysis considering the change of the numbers of suppliers and backup routes is done. Experimental results show that the performances of the pro-HGA approach are superior to those of the conventional approaches, and the flexibility and efficiency of the SCN model considering supply disruption are proved. Finally, the significance of this study is summarized and a potential future research direction is mentioned in conclusion.

Reinforcing Reverse Logistics Activities in Closed-loop Supply Chain Model: Hybrid Genetic Algorithm Approach (폐쇄루프공급망모델에서 역물류 활동 강화: 혼합유전알고리즘 접근법)

  • Yun, YoungSu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.1
    • /
    • pp.55-65
    • /
    • 2021
  • In this paper, a methodology for reinforcing reverse logistics (RL) activities in a closed-loop supply chain (CLSC) model is proposed. For the methodology, the activities of the recovery center (RC) which can be considered as one of the facilities in the RL are reinforced. By the reinforced activities in the RC, the recovered parts and products after checking and recovering processes of the returned product from customer can be reused in the forward logistics (FL) of the CLSC model. A mathematical formulation is suggested for representing the CLSC model with reinforced RL activities, and implemented using a hybrid genetic algorithm (HGA) approach. In numerical experiment, two different scales of the CLSC model are presented and the performance of the HGA approach is compared with those of some conventional approaches. The experimental results show that the former outperforms the latter in most of performance measures. The robustness of the CLSC model is also proved by regulating various rates of the recovered parts and products in the RC.

A Distributed Stock Cutting using Mean Field Annealing and Genetic Algorithm

  • Hong, Chul-Eui
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.13-18
    • /
    • 2010
  • The composite stock cutting problem is defined as allocating rectangular and irregular patterns onto a large composite stock sheet of finite dimensions in such a way that the resulting scrap will be minimized. In this paper, we introduce a novel approach to hybrid optimization algorithm called MGA in MPI (Message Passing Interface) environments. The proposed MGA combines the benefit of rapid convergence property of Mean Field Annealing and the effective genetic operations. This paper also proposes the efficient data structures for pattern related information.

A Study on Wall Emissivity Estimation using RPSO Algorithm (RPSO 알고리즘을 이용한 벽면 방사율 추정에 관한 연구)

  • Lee, Kyun-Ho;Baek, Seung-Wook;Kim, Ki-Wan;Kim, Man-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2476-2481
    • /
    • 2007
  • An inverse radiation analysis is presented for the estimation of the wall emissivities for an absorbing, emitting, and scattering media with diffusely emitting and reflecting opaque boundaries. In this study, a repulsive particle swarm optimization(RPSO) algorithm which is a relatively recent heuristic search method is proposed as an effective method for improving the search efficiency for unknown parameters. To verify the performance of the proposed RPSO algorithm, it is compared with a basic particle swarm optimization(PSO) algorithm and a hybrid genetic algorithm(HGA) for the inverse radiation problem with estimating the wall emissivities in a two-dimensional irregular medium when the measured temperatures are given at only four data positions. A finite-volume method is applied to solve the radiative transfer equation of a direct problem to obtain measured temperatures.

  • PDF

The Hybrid Fuzzy Controller using the Hybrid Auto-tuning Algorithm (하이브리드 자동 동조 알고리즘을 이용한 하이브리드 퍼지 제어기)

  • Lee, Dae-Keun;Kim, Joong-Young;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.521-523
    • /
    • 1999
  • In this paper, we propose the hybrid fuzzy controller(HFC) and the hybrid auto-tuning algorithm. The proposed HFC combined a PID controller with a fuzzy controller concurrently produces the better output performance such as sensitivity improvement in steady state and robustness in transient state than any other controller. In addition, a hybrid auto-tuning algorithm which consists of genetic algorithm and complex algorithm to automatically generate weighting factor, scaling factors and PID control gains optimizes the output of HFC. As an typical example of non-linear system in control theory an inverted pendulum will be controlled by the suggested HFC and illustrated the performance and applicability of this proposed method by simulation.

  • PDF

혼합 유전알고리즘을 이용한 비선형 최적화문제의 효율적 해법

  • 윤영수;이상용
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.1 no.1
    • /
    • pp.63-85
    • /
    • 1996
  • This paper describes the applications of genetic algorithm to nonlinear constrained optimization problems. Genetic algorithms are combinatorial in nature, and therefore are computationally suitable for treating continuous and idstrete integer design variables. For several problems , the conventional genetic algorithms are ill-defined , which comes from the application of penalty function , encoding and decoding methods, fitness scaling, and premature convergence of solution. Thus, we develope a hybrid genetic algorithm to resolve these problems and present two examples to demonstrate the effectiveness of the methodology developed in this paper.

  • PDF

A Hybrid Genetic Ant Colony Optimization Algorithm with an Embedded Cloud Model for Continuous Optimization

  • Wang, Peng;Bai, Jiyun;Meng, Jun
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1169-1182
    • /
    • 2020
  • The ant colony optimization (ACO) algorithm is a classical metaheuristic optimization algorithm. However, the conventional ACO was liable to trap in the local minimum and has an inherent slow rate of convergence. In this work, we propose a novel combinatorial ACO algorithm (CG-ACO) to alleviate these limitations. The genetic algorithm and the cloud model were embedded into the ACO to find better initial solutions and the optimal parameters. In the experiment section, we compared CG-ACO with the state-of-the-art methods and discussed the parameter stability of CG-ACO. The experiment results showed that the CG-ACO achieved better performance than ACOR, simple genetic algorithm (SGA), CQPSO and CAFSA and was more likely to reach the global optimal solution.