• Title/Summary/Keyword: hybrid fiber reinforced

Search Result 336, Processing Time 0.028 seconds

Slump and Mechanical Properties of Hybrid Steel-PVA Fiber Reinforced Concrete (강섬유와 PVA 섬유로 하이브리드 보강된 콘크리트의 슬럼프 및 역학적 특성)

  • Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.651-658
    • /
    • 2010
  • Sixteen concrete mixes reinforced with hybrid steel-polybinyl alcohol (PVA) fibers and a control concrete mix with no fiber were tested in order to examine the effect of the micro and macro fibers on the slump and different mechanical properties of concrete. Main variables investigated were length and volume fraction of steel and PVA fibers. The measured mechanical properties of hybrid fiber reinforced concrete were analyzed using the fiber reinforcing index and compared with those recorded from monolithic steel or PVA fiber reinforced concrete. The initial slump of hybrid fiber reinforced concrete decreased with the increase of the aspect ratio and the volume fraction of fibers. In addition, splitting tensile strength, modui of rupture and elasticity, and flexural toughness index of concrete increased with the increase of the fiber reinforcement index. Modulus of rupture and flexural toughness index of hybrid fiber reinforced concrete were higher than those of monolithic fiber reinforced concrete, though the total volume fraction of hybrid fibers was lower than that of monolithic fiber. For enhancing the flexural toughness index of hybrid fiber reinforced concrete, using the steel fiber of 60 mm length was more effective than using the steel fibers combined with 60 mm and 30 mm lengths.

Fracture behavior of monotype and hybrid fiber reinforced self-compacting concrete at different temperatures

  • Mazloom, Moosa;Karimpanah, Hemin;Karamloo, Mohammad
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.375-386
    • /
    • 2020
  • In the present study, the effect of basalt, glass, and hybrid glass-basalt fibers on mechanical properties and fracture behavior of self-compacting concrete (SCC) mixes have been assessed at room and elevated temperatures. To do so, twelve mix compositions have been prepared such that the proper workability, flowability, and passing ability have been achieved. Besides, to make comparison possible, water to binder ratio and the amount of solid contents were kept constant. Four fiber dosages of 0.5, 1, 1.5, and 2% (by concrete volume) were considered for monotype fiber reinforced mixes, while the total amount of fiber were kept 1% for hybrid fiber reinforced mixes. Three different portions of glass and basalt fiber were considered for hybridization of fibers to show the best cocktail for hybrid basalt-glass fiber. Test results indicated that the fracture energy of mix is highly dependent on both fiber dosage and temperature. Moreover, the hybrid fiber reinforced mixes showed the highest fracture energies in comparison with monotype fiber reinforced specimens with 1% fiber volume fraction. In general, hybridization has played a leading role in the improvement of mechanical properties and fracture behavior of mixes, while compared to monotype fiber reinforced specimens, hybridization has led to lower amounts of compressive strength.

Effect of Fiber Orientation on Failure Strength Properties of Natural Fiber Reinforced Composites including Adhesive Bonded Joint (접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 섬유 방향의 영향)

  • Yoon, Ho-Chel
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.43-48
    • /
    • 2006
  • This paper is concerned with a fracture strength study of composite adhesive lap joints. The tests were carried out on specimen joints manufactured hybrid stacked composites such as the polyester and bamboo natural fiber layer. The main objective of the work was to test the fracture strength using hybrid stacked composites with a polyester and bamboo natural fiber layer. Tensile and peel strength of hybrid stacked composites are tested before appling adhesive bonding. From results, Natural fiber reinforced composites have lower tensile strength than the original polyester. and The load directional orientation and small amount and low thickness of bamboo natural fiber layer have a good effect on the tensile and peel strength of natural fiber reinforced composites. The failure strength of these materials applied adhesive bonding is also affected by fiber orientation and thickness of bamboo natural fiber layer. There for, Fiber orientation of bamboo natural fiber layer have a great effect on the tensile-shear strength of natural fiber reinforced composites including adhesive bonded joints.

Effect of Strain Rate on Tensile Behavior of Hybrid Fiber Reinforced Cement-based Composites (하이브리드 섬유보강 시멘트복합체의 인장거동에 미치는 변형속도의 영향)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Bo-Kyeong;Lee, Sang-Kyu;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.122-123
    • /
    • 2017
  • In this study, the tensile behavior of single and hybrid fiber reinforced cement composite according to strain rate was evaluated. Experimental results, in the strain rate 10-6/s, fiber reinforced cement composite showed improved of tensile strength and decrease of strain at peak stress as SSF volume content increased. In the strain rate 101/s, the single and hybrid reinforced cement composite' s tensile properties are improved, because of the improved bond strength between the fiber and matrix. And hybrid fiber reinforced cement composite showed high energy absorption capacity, because the SSF prevented the cracking and fracture of the surrounding matrix when during the HSF pull-out.

  • PDF

Strain Rate Effect on the Tensile Properties of Steel Fiber Hybrid Reinforced Cement Composites (강섬유를 하이브리드 보강한 섬유보강 시멘트복합체의 인장특성에 미치는 변형속도의 영향)

  • Kim, In-Ho;Kim, Gyu-Yong;Lee, Sang-Kyu;Son, Min-Jae;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.87-88
    • /
    • 2018
  • In this study, the tensile properties of single and hybrid fiber reinforced cement composite according to strain rate was evaluated. Experimental results, in the strain rate 10-6/s, fiber reinforced cement composite showed improved of tensile strength and decrease of strain at peak stress as SSF volume content increased. In the strain rate 101/s, the single and hybrid reinforced cement composite's tensile properties are improved, because of the improved bond strength between the fiber and matrix. And hybrid fiber reinforced cement composite showed high energy absorption capacity, because the SSF prevented the cracking and fracture of the surrounding matrix when during the HSF pull-out.

  • PDF

Assessment of flexural performance of hybrid fiber reinforced concrete. (하이브리드 섬유보강 콘크리트의 휨성능 평가)

  • Kim, Hag-Youn;Kim, Nam-Ho;Park, Choon-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.337-340
    • /
    • 2005
  • In this study, an effect of fiber blending on material property of Hybrid Fiber Reinforced Concrete (HFRC) was evaluated. Also, Compare and evaluates collating and mechanical property by the mixing rate of fiber for HFRC was determine. Modulus of rupture and strength effectiveness of Hybrid Fiber Reinforced Concrete mixed with macro-fiber(steel fiber) and micro-fiber(glass fiber, carbon fiber, cellulose fiber). Test result shows, in the case of mono fiber reinforced concrete. As the steel fiber mixing rate increases to 1.5$\%$, the strength effectiveness promotion rate rises. However, when is 2.0$\%$, strength decreases. In the case of hybrid fiber reinforcement concrete, synergy effect of micro fiber and macro fiber happens and higher Modulus of rupture and strength effectiveness appears than mono-fiber reinforcement concrete. Use of hybrid fiber reinforcement in concrete caused a significant influence on its fracture behavior; consequently, caused increase by mixing rate of steel fiber + carbon fiber and contributed by steel fiber + glass fiber, steel fiber + celluloid fiber in reinforcement effect in order. And was expose that steel fiber(1.5$\%$) + carbon fiber(0.5$\%$) is most suitable association.

  • PDF

Material Model for Compressive and Tensile Behaviors of High Performance Hybrid Fiber Reinforced Concrete (고성능 하이브리드 섬유보강 콘크리트의 압축 및 인장 거동에 대한 재료모델)

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.311-321
    • /
    • 2021
  • Many studies have been performed on hybrid fiber reinforced concrete for years, which is to improve some of the weak material properties of concrete. Studies on characteristics of hybrid fiber reinforced concrete using amorphous steel fiber and organic fiber, however, yet remain to be done. The purpose of this research is to evaluate the compressive and tensile behaviors and then propose a material model of high performance hybrid fiber reinforced concrete using amorphous steel fiber and polyamide fiber. For this purpose, the high performance hybrid fiber reinforced concretes were made according to their total volume fraction of 1.0% for target compressive strength of 40MPa and 60MPa, respectively, and then the compressive and tensile behaviors of those were evaluated. Also, based on the experimental results of the high performance hybrid fiber reinforced concrete and mortar, each material model for the compressive and tensile behavior was suggested. It was found that the experimental results and the proposed models corresponded relatively well.

Workability and Mechanical Properties of Hybrid Fiber Reinforced Concrete Using Amorphous Steel Fiber and Polyamide Fiber

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin;Kim, Yo-Seb;Jun, Jin;Kim, Wha-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.470-476
    • /
    • 2016
  • Many studies have been performed on hybrid fiber reinforced concrete for years, which is to improve some of the weak material properties of concrete. Studies on characteristics of hybrid fiber reinforced concrete using amorphous steel fiber and polyamide fiber, however, yet remain to be done. The purpose of this experimental research is to evaluate the workability and mechanical properties of hybrid fiber reinforced concrete using amorphous steel fiber and polyamide fiber. For this purpose, the hybrid fiber reinforced concrete containing amorphous steel fiber(ASF) and polyamide fiber(PAF) were made according to their total volume fraction of 0.5 % for water-binder ratio of 33 %, and then the mechanical properties such as the compressive strength, direct tensile strength, flexural strength, and flexural toughness of those were estimated. It was observed from the test results that the compressive strength was slightly decreased with increasing ASF and decreasing PAF and the effect of fiber combination on the flexural strength was not much but the flexural toughness was relatively largely increased with decreasing ASF and increasing PAF.

Flexural and Interfacial Bond Properties of Hybrid Steel/Glass Fiber Reinforced Polymer Composites Panel Gate with Steel Gate Surface Deformation for Improved Movable Weir (개량형 가동보에 적용하기 위한 하이브리드 강판/GFRP 패널 게이트의 강판게이트 표면형상에 따른 휨 및 계면 부착 특성 평가)

  • Kim, Ki Won;Kwon, Hyung Joong;Kim, Phil Sik;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.57-66
    • /
    • 2015
  • The purpose of this study was to improved the durability of a improved movable weir by replacing the improved movable weir's metal gate with a hybrid steel/glass fiber reinforced polymer composites panel gate. Because the metal gate of a improved movable weir is always in contact with water, its service life is shortened by corrosion. This study made four type of hybrid steel/glass fiber reinforced polymer composites panel gate with different steel gate surface deformation (control, sand blast, scratch and hole), flexural. Fracture properties tests were performed depending on the steel gate surface deformation. According to the test results, the flexural behavior, flexural strength and fracture properties of hybrid steel/glass fiber reinforced polymer composites panel gate was affected by the steel panel gate surface deformation. Also, the sand blast type hybrid steel/glass fiber reinforced polymer composites panel gate shows vastly superior flexural and fracture performance compared to other types.

A Processing and Flexural Performance Evaluation of Hybrid Organic Fiber Reinforced Concrete (하이브리드 유기섬유 보강 콘크리트의 제조 및 휨성능 평가)

  • Jeon, Chanki;Jeon, Joongkyu;Shim, Jaeyeong
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.213-220
    • /
    • 2017
  • Organic fiber reinforced concrete is applicable to many applications for construction material. In general, organic fibers have low tensile strength and elastic modulus, but they have many advantages such as high crack resistance, impact resistance, chemical resistance, flexural behavior and corrosion resistance. In this study, hybrid organic fibers were prepared by mixing polyamide (PA) fibers and high strength polyester (PET) fibers. Then, flexural performance test of fiber reinforced concrete containing hybrid organic fiber was performed. The energy absorption capacity of the hybrid organic fiber reinforced concrete was evaluated.