• Title/Summary/Keyword: hybrid detection

Search Result 448, Processing Time 0.029 seconds

Hybrid Scaling Based Dynamic Time Warping for Detection of Low-rate TCP Attacks

  • So, Won-Ho;Yoo, Kyoung-Min;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.592-600
    • /
    • 2008
  • In this paper, a Hybrid Scaling based DTW (HS-DTW) mechanism is proposed for detection of periodic shrew TCP attacks. A low-rate TCP attack which is a type of shrew DoS (Denial of Service) attacks, was reported recently, but it is difficult to detect the attack using previous flooding DoS detection mechanisms. A pattern matching method with DTW (Dynamic Time Warping) as a type of defense mechanisms was shown to be reasonable method of detecting and defending against a periodic low-rate TCP attack in an input traffic link. This method, however, has the problem that a legitimate link may be misidentified as an attack link, if the threshold of the DTW value is not reasonable. In order to effectively discriminate between attack traffic and legitimate traffic, the difference between their DTW values should be large as possible. To increase the difference, we analyze a critical problem with a previous algorithm and introduce a scaling method that increases the difference between DTW values. Four kinds of scaling methods are considered and the standard deviation of the sampling data is adopted. We can select an appropriate scaling scheme according to the standard deviation of an input signal. This is why the HS-DTW increases the difference between DTW values of legitimate and attack traffic. The result is that the determination of the threshold value for discrimination is easier and the probability of mistaking legitimate traffic for an attack is dramatically reduced.

Iub Congestion Detection Method for WCDMA HSUPA Network to Improve User Throughput (WCDMA HSUPA 망의 성능 향상을 위한 Iub 혼잡 검출 방법)

  • Ahn, Ku-Ree;Lee, Tae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.16-24
    • /
    • 2010
  • High Speed Uplink Packet Access(HSUPA) is a WCDMA Release 6 technology which corresponds to High Speed Downlink Packet Access(HSDPA). Node B Supports fast scheduling, Hybrid ARQ(HARQ), short Transmission Time Interval(TTI) for high rate uplink packet data. It is very important to detect Iub congestion to improve end user's Quality of Service(QoS). This paper proposes Node B Congestion Detection(BCD) mechanism and suggests to use the hybrid of Transport Network Layer(TNL) congestion detection and BCD. It is shown that HSUPA user throughput performance can be improved by the proposed method even with small Iub bandwidth.

A Hybrid Digital Watermarking Technique for Copyright Protection and Tamper Detection on Still images (정지영상에서 저작권 보호 및 위변조 검출을 위한 하이브리드 디지털 워터마킹 기법)

  • Yoo Kil-Sang;Song Geun-Sil;Choi Hyuk;Lee Won-Hyung
    • Journal of Internet Computing and Services
    • /
    • v.4 no.4
    • /
    • pp.27-34
    • /
    • 2003
  • Digital image manipulation software is now readily available on personal computers. It is therefore very simple to tamper with any image and make it available to others. Therefore. copyright protection of digital contents and insurance of digital image integrity become major issues. In this paper, we propose a hybrid watermarking method to identify locations of tampered region as well as copyright. Our proposed algorithms embed the PN-sequence into low frequency sub-band of the wavelet transform domain and it doesn't need the original image in extraction procedure. The experimental results show good robustness against any signal processing with tamper detection on still image.

  • PDF

Evolutionary-base finite element model updating and damage detection using modal testing results

  • Vahidi, Mehdi;Vahdani, Shahram;Rahimian, Mohammad;Jamshidi, Nima;Kanee, Alireza Taghavee
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.339-350
    • /
    • 2019
  • This research focuses on finite element model updating and damage assessment of structures at element level based on global nondestructive test results. For this purpose, an optimization system is generated to minimize the structural dynamic parameters discrepancies between numerical and experimental models. Objective functions are selected based on the square of Euclidean norm error of vibration frequencies and modal assurance criterion of mode shapes. In order to update the finite element model and detect local damages within the structural members, modern optimization techniques is implemented according to the evolutionary algorithms to meet the global optimized solution. Using a simulated numerical example, application of genetic algorithm (GA), particle swarm (PSO) and artificial bee colony (ABC) algorithms are investigated in FE model updating and damage detection problems to consider their accuracy and convergence characteristics. Then, a hybrid multi stage optimization method is presented merging advantages of PSO and ABC methods in finding damage location and extent. The efficiency of the methods have been examined using two simulated numerical examples, a laboratory dynamic test and a high-rise building field ambient vibration test results. The implemented evolutionary updating methods show successful results in accuracy and speed considering the incomplete and noisy experimental measured data.

D-space-controlled graphene oxide hybrid membrane-loaded SnO2 nanosheets for selective H2 detection

  • Jung, Ji-Won;Jang, Ji-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.376-380
    • /
    • 2021
  • The accurate detection of hydrogen gas molecules is considered to be important for industrial safety. However, the selective detection of the gas using semiconductive metal oxides (SMOs)-based sensors is challenging. Here, we describe the fabrication of H2 sensors in which a nanocellulose/graphene oxide (GO) hybrid membrane is attached to SnO2 nanosheets (NSs). One-dimensional (1D) nanocellulose fibrils are attached to the surface of GO NSs (GONC membrane) by mixing GO and nanocellulose in a solution. The as-prepared GONC membrane is employed as a sacrificial template for SnO2 NSs as well as a molecular sieving membrane for selective H2 filtration. The combination of GONC membrane and SnO2 NSs showed substantial selectivity to hydrogen gas (Rair / Rgas > 10 @ 0.8 % H2, 100 ℃) with noise level responses to interfering gases (H2S, CO, CH3COCH3, C2H5OH, and NO2). These remarkable sensing results are attributed mainly to the molecular sieving effect of the GONC membrane. These results can facilitate the development of a highly selective H2 detector using SMO sensors.

A Machine Learning-Driven Approach for Wildfire Detection Using Hybrid-Sentinel Data: A Case Study of the 2022 Uljin Wildfire, South Korea

  • Linh Nguyen Van;Min Ho Yeon;Jin Hyeong Lee;Gi Ha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.175-175
    • /
    • 2023
  • Detection and monitoring of wildfires are essential for limiting their harmful effects on ecosystems, human lives, and property. In this research, we propose a novel method running in the Google Earth Engine platform for identifying and characterizing burnt regions using a hybrid of Sentinel-1 (C-band synthetic aperture radar) and Sentinel-2 (multispectral photography) images. The 2022 Uljin wildfire, the severest event in South Korean history, is the primary area of our investigation. Given its documented success in remote sensing and land cover categorization applications, we select the Random Forest (RF) method as our primary classifier. Next, we evaluate the performance of our model using multiple accuracy measures, including overall accuracy (OA), Kappa coefficient, and area under the curve (AUC). The proposed method shows the accuracy and resilience of wildfire identification compared to traditional methods that depend on survey data. These results have significant implications for the development of efficient and dependable wildfire monitoring systems and add to our knowledge of how machine learning and remote sensing-based approaches may be combined to improve environmental monitoring and management applications.

  • PDF

Analysis of MANET's Routing Protocols, Security Attacks and Detection Techniques- A Review

  • Amina Yaqoob;Alma Shamas;Jawwad Ibrahim
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.23-32
    • /
    • 2024
  • Mobile Ad hoc Network is a network of multiple wireless nodes which communicate and exchange information together without any fixed and centralized infrastructure. The core objective for the development of MANET is to provide movability, portability and extensibility. Due to infrastructure less network topology of the network changes frequently this causes many challenges for designing routing algorithms. Many routing protocols for MANET have been suggested for last few years and research is still going on. In this paper we review three main routing protocols namely Proactive, Reactive and Hybrid, performance comparison of Proactive such as DSDV, Reactive as AODV, DSR, TORA and Hybrid as ZRP in different network scenarios including dynamic network size, changing number of nodes, changing movability of nodes, in high movability and denser network and low movability and low traffic. This paper analyzes these scenarios on the performance evaluation metrics e.g. Throughput, Packet Delivery Ratio (PDR), Normalized Routing Load(NRL) and End To-End delay(ETE).This paper also reviews various network layer security attacks challenge by routing protocols, detection mechanism proposes to detect these attacks and compare performance of these attacks on evaluation metrics such as Routing Overhead, Transmission Delay and packet drop rates.

Hybrid Interference Cancellation for OFDMA Uplink in Time-Varying Fading Channels (시변 페이딩 채널에서 상향 직교 주파수 분할 다중 접속을 위한 혼합 간섭 제거 기법)

  • Song, Hyung-Joon;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.78-85
    • /
    • 2009
  • In time-varying multipath fading channels, orthogonal frequency division multiple access (OFDMA) uplink systems suffer severe performance degradation caused by inter-channel interference (ICI). In this paper, we propose a hybrid interference cancellation (HIC) for suppressing the degradation effect of ICI. The proposed HIC can achieve both exact interference cancellation and low detection complexity through efficient combination of parallel detection and serial cancellation. Simulation results show that, as the effect of Doppler increases, the proposed HIC achieves bit error rate (BER) performance enhancement in compared with severe performance degradation of conventional OFDMA receivers. In addition, both the computational complexity and total detection time are reduced.

Performance Analysis of an Adaptive Hybrid Search Code Acquisition Algorithm for DS-CDMA Systems (DS-CDMA 시스템을 위한 적응 혼합 검색형 동기획득 알고리즘의 성능 분석)

  • Park Hyung rae;Yang Yeon sil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3C
    • /
    • pp.83-91
    • /
    • 2005
  • We analyze the performance of an adaptive hybrid search code acquisition algorithm for direct-sequence code division multiple access (DS-CDMA) systems under slowly-moving mobile environments. The code acquisition algorithm is designed to provide the desired feature of constant false alarm rate (CFAR) to cope with nonstationarity of the interference in CDMA forward links. An analytical expression for the mean acquisition time is first derived and the probabilities of detection, miss, and false alarm are then obtained for frequency-selective Rayleigh fading environments. The fading envelope of a received signal is assumed to be constant over the duration of post-detection integration (PDI), considering slow fading environments. Finally, the performance of the designed code acquisition algorithm shall be evaluated numerically to examine the effect of some design parameters such as the sub-window size, size of the PDI, decision threshold, and so on, considering cdma2000 environments.

Detection Method for Digital Radio Mondiale Signal in FM-band (FM 대역에서 Digital Radio Mondiale Plus 신호 검출 기법)

  • Kim, Seong-Jun;Wee, Jung-Wook;Jeon, Won-Gi;Lee, Kyung-Taek;Choi, Hyung-Jin
    • Journal of Broadcast Engineering
    • /
    • v.18 no.6
    • /
    • pp.823-834
    • /
    • 2013
  • In this paper, we propose a detection method for Digital Radio Mondiale (DRM) Plus suitable for hybrid mode broadcasting which services both DRM Plus and analog FM within the same frequency band. The guard-interval correlation method of Orthogonal Frequency Division Multiplexing (OFDM) is good for DRM Plus signal detection, but the possibility for false alarm increases when FM signal is received. The proposed method includes a reference block in the guard-interval correlation which increases the identification rate of weak DRM Plus signals and decreases the possibility of false alarm when analog FM is received. The performance of the proposed method is verified through simulations.