• Title/Summary/Keyword: hybrid beamforming

Search Result 34, Processing Time 0.025 seconds

Design of a Hybrid Beamforming Antenna System Using Broadband Butler Matrix and Phase Shifter (광대역 버틀러 매트릭스와 위상 천이기를 이용한 하이브리드 빔포밍 안테나 시스템 설계)

  • Choi, Sehwan;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.501-504
    • /
    • 2017
  • In this paper, a hybrid beamforming antenna system using broadband butler matrix and phase shifter is proposed. In the previous works, an $8{\times}8$ butler matrix is used to overcome a drawback of the $4{\times}4$ butler matrix based switched beamforming which provides only 4 beam patterns. However the $8{\times}8$ butler matrix should be designed on the bi-layered substrate using via holes due to its complex structure. It causes performance degradation. To overcome these problems, the proposed hybrid beamforming antenna system is designed on the single side of the substrate for simple structure. By addition of two phase shifter, it provide various beam patterns. The proposed antenna system provides more than 10 dBi radiation gain in the ${\pm}45^{\circ}$ scanning range by 16 input combinations.

Combined Hybrid Beamforming and Spatial Multiplexing for Millimeter-Wave Massive MIMO Systems (밀리미터파 Massive MIMO 시스템을 위한 공간 다중화 및 하이브리드 빔 형성)

  • Ju, Sang-Lim;Lee, Byung-Jin;Kim, Nam-Il;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.123-129
    • /
    • 2018
  • Recently, as required wireless communication traffic increase, millimeter wave mobile technologies that can secure broadband spectrum are gaining attention. However, the path loss is high in the millimeter wave channel. Massive MIMO system is being researched in which can complement the path loss by beamforming by equiped large-scale antenna at the base station. While legacy beamforming techniques have analog and digital methods, practical difficulties exist for application to massive MIMO systems in terms of system complexity and cost. Therefore, this paper studies a hybrid beamforming scheme for massive MIMO system in the millimeter wave band. Also this paper considers spatial multiplexing scheme to serve multi-users with multiple received antennas. Gains of the beamforming and the spatial multiplexing schemes are evaluated by analyzing the spectral efficiency.

Increasing Secrecy Capacity via Joint Design of Cooperative Beamforming and Jamming

  • Guan, Xinrong;Cai, Yueming;Yang, Weiwei;Cheng, Yunpeng;Hu, Junquan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1041-1062
    • /
    • 2012
  • In this paper, we propose a hybrid cooperative scheme to improve the secrecy rate for a cooperative network in presence of multiple relays. Each relay node transmits the mixed signal consisting of weighted source signal and intentional noise. The problem of power allocation, the joint design of beamforming and jamming weights are investigated, and an iterative scheme is proposed. It is demonstrated by the numerical results that the proposed hybrid scheme further improves secrecy rate, as compared to traditional cooperative schemes.

Reduced Feedback Energy Based Hybrid Beamforming for Millimeter Wave MIMO Systems (다중 안테나 밀리미터파 시스템에서 피드백 에너지를 절감시키는 하이브리드 빔포밍 기술)

  • Noh, Jeehwan;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.3-8
    • /
    • 2014
  • We consider a limited feedback based hybrid beamforming which reduces the energy of feedback information. In the millimeter wave channel, some rays with large ray gain dominate energy of the channel. Using this point, we propose a channel feedback scheme that employs limited number of channel rays. Also, we provide a hybrid beamforming scheme for the limited feedback system. Based on the simulation results, the proposed scheme shows a comparable data rate performance with conventional schemes, while it remarkably reduces energy of channel feedback.

Zero-forcing Beamforming for Hybrid Relaying (Hybrid Relaying을 위한 Zero-forcing Beamforming 기법)

  • Park, Jong-Rok;Ham, Sung-Jun;Lee, Sang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.251-252
    • /
    • 2008
  • Throughput and quality-of-service (QoS) over multi-cell environments are two of the most challenging issues that must be addressed when developing next generation wireless network standards. Currently, multiple-input/multiple-output (MIMO), inter-cell coordination and multi-hop relay technologies are viable options for improving channel capacity or coverage extension. Nevertheless, severe QoS degradation occurs in the outer region of multi-cells due to significant interference from neighboring cells or relay stations, thereby limiting overall performance. Therefore, we propose a scheme which adapted to hybrid relaying.

  • PDF

Mode Selection Technique Between Antenna Grouping and Beamforming for MIMO Communication Systems (다중 입출력 시스템에서 안테나 그룹화와 빔 형성 사이의 모드 선택 기법)

  • Kim, Kyung-Chul;Lee, Jung-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.147-154
    • /
    • 2009
  • Antenna grouping algorithm is hybrid of beamforming and spatial multiplexing. In antenna grouping system, we partition $N_t$ transmit antennas into $N_r$ groups and use beamforming in a group, spatial multiplexing between groups. We can transmit $N_r$ data streams in the $N_t{\times}N_r$ antenna grouping system. With antenna grouping, we can achieve diversity gain through beamforming, and high spectral efficiency through spatial multiplexing. But if channel is ill-conditioned or there are some correlations between antennas, the performance of antenna grouping is seriously degraded and in that case, beamforming is the best transmit strategy. By selecting the antenna grouping mode when channel is well-conditioned and by selecting the beamforming mode when channel is ill-conditioned, we can prevent serious fluctuation of BER performance caused by varying channel condition and achieve the best BER performance. In this paper, we investigate mode selection algorithm which can select antenna grouping mode or beamforming mode. we also propose a simple mode selection criterion.

Simultaneous Transmission of Multiple Unicast and Multicast Streams Using Non-orthogonal Multiple Access (비직교 다중접속 방식을 이용한 다중 유니캐스트와 멀티캐스트 스트림 동시 전송)

  • Shin, Changyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.11-19
    • /
    • 2021
  • In this paper, we propose a non-orthogonal multiple access (NOMA) method based on channel alignment to simultaneously transmit multiple unicast and multicast streams in frequency-efficient manner. In this method, all receivers in a multicast cluster use the receive beamforming vectors that align their channels, and the base station uses the aligned channel information to design the transmit beamforming vectors that eliminate interference between multicast clusters. Using the effective receive channel information combined with the transmit beamforming vectors, unicast receivers design their own receive beamforming vectors that eliminate interference between unicast receivers. Since the proposed method effectively eliminates the interference, it achieves a higher sum rate than the existing orthogonal multiple access (OMA) method in high SNR regions. In addition, we present a hybrid method that exploits the benefits of the proposed NOMA method and the existing OMA method. Depending on the channel state, the hybrid method adaptively employs the existing OMA method, which improves the received signal power, in low SNR regions and the proposed NOMA method, which effectively eliminates the interference, in high SNR regions, thereby achieving a good sum rate over the entire SNR region.

Adaptive Beam Selection Method for Improvement of Spectral Efficiency in Millimeter-Wave MIMO (밀리미터파 대역의 다중입출력 안테나 시스템에서 스펙트럼 효율 향상을 위한 적응적 빔 선택 기법)

  • Kim, Jun-Ho;Byun, Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.890-895
    • /
    • 2016
  • As the wireless communication technique is developing rapidly, the use of smart devices is increasing. Due to gradually increasing data traffic, a new area, more than 6GHz of bandwidth to increase capacity of the network, has been studied. Millimeter Wave(MmWave) communications utilizes the bandwidth above 6GHz, which makes it possible to achieve one gigabit per second data rate. To overcome the path loss due to the smaller wavelength, the mass of the antenna arrangement is used. This paper presents an algorithm that maximizes the spectral efficiency of the system in the pre-coding process using a hybrid beamforming. Also it is suggested with the optimization of the number of beams that maximizes the spectral efficiency was maximized by the propose method.

Performance Improvement of Downlink Real-Time Traffic Transmission Using MIMO-OFDMA Systems Based on Beamforming (Beamforming 기반 MIMO-OFDMA 시스템을 이용한 하향링크 실시간 트래픽 전송 성능 개선)

  • Yang Suck-Chel;Park Dae-Jin;Shin Yo-An
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.1-9
    • /
    • 2006
  • In this paper, we propose a MIMO-OFDMA (Multi Input Multi Output-Orthogonal Frequency Division Multiple Access) system based on beamforming for performance improvement of downlink real-time traffic transmission in harsh channel conditions with low CIR (Carrier-to-Interference Ratio). In the proposed system, we first consider the M-GTA-SBA (Modified-Grouped Transmit Antenna-Simple Bit Allocation) using effective CSI (Channel State Information) calculation procedure based on spatial resource grouping, which is adequate for the combination of MRT (Maximum Ratio Transmission) in the transmitter and MRC (Maximum Ratio Combining) in the receiver. In addition, to reduce feedback information for the beamforming, we also apply QEGT (Quantized Equal Gain Transmission) based on quantization of amplitudes and phases of beam weights. Furthermore, considering multi-user environments, we propose the P-SRA (Proposed-Simple Resource Allocation) algorithm for fair and efficient resource allocation. Simulation results reveal that the proposed MIMO-OFDMA system achieves significant improvement of spectral efficiency in low CRI region as compared to a typical open-loop MIMO-OFDMA system using pseudo-orthogonal space time block code and H-ARQ IR (Hybrid-Automatic Repeat Request Incremental Redundancy).