• Title/Summary/Keyword: hybrid FRP rebars

Search Result 8, Processing Time 0.019 seconds

Ductile Strengthening of Reinforced Concrete Beams by Partially Unbonded NSM Hybrid FRP Rebars (부분 비부착 NSM Hybrid FRP 보강근에 의한 철근콘크리트보의 연성보강)

  • Lee, Cha-Don;Chung, Sang-Mo;Won, Jong-Pil;Lee, Sng-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.143-153
    • /
    • 2003
  • New strengthening method based on Near Surface Mounted technique (NSM) is suggested, which can overcome the brittle nature of failure inherent to those reinforced concrete beams strengthened with FRP composite materials. The suggested technique secures ductile failure of reinforced concrete beams by having the strengthening Hybrid FRP rebars unbonded in parts. Experiments were performed in order to compare structural behaviors of strengthened beams with and without unbending along the Hybrid FRP rebars. Test results showed that only those beams strengthened by partially unbonded NSM failed in ductile manner. Theoretical expressions were derived for the minimum unbonded length of Hybrid FRP rebars with which ultimate strength of the reinforced concrete beam with partially unbonded NSM could be reached. The suggested partially unbonded NSM technique is expected to significantly improve the structural behavior of the strengthened beam with FRP composite materials.

Experimental Evaluation on Strengthening of NSM and! Section Increment with FRP Rebars (FRP 보강근을 이용한 표면매립 및 단면확대공법의 실험적 성능평가)

  • 정상모;이차돈;원종필;황윤국;김정호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.549-554
    • /
    • 2003
  • In order to overcome the brittle failure of strengthening with FRP-rebars inherent to their brittle properties, two approaches have been attempted. One is to improve the properties like ductile Hybrid FRP Rods, and the other is to develop a ductile strengthening with partially unbonded FRP rebars. Experiments on real size specimen were performed to evaluate the performance of NSM (Near Surface Mounted Strengthening) and SIM (Section Increment Methods) with FRP rebars. This paper discusses the results of the tests on 8 slab specimen in terms of flexural resistance, ductility, and fatigue. They show that NSM or S1M with FRP rebars are very effective measures to strengthen existing RC structures. Above all, strengthening with partially unbonded ductile Hybrid FRP Rods shows sufficient ductility similar to that of properly designed RC structures.

  • PDF

The properties of hybrid FRP rebar for concrete structures (콘크리트 보강용 하이브리드 FRP 리바의 특성)

  • 원종필;박찬기;황금식;윤종환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.255-260
    • /
    • 2003
  • The corrosion of steel rebars has been the major cause of the reinforced concrete deterioration. It is FRP rebar that is developed to solve problem of such steel rebar. FRP rebar in concrete structures should be used as a substitute of steel rebars for that cases in which aggressive environment produce high steel corrosion, or lightweight is an important design factor, or transportation cost increase significantly with the weight of the materials. But FRP rebar have only linearly elastic behavior; whereas, steel rebar has linear elastic behavior up to the yield point followed by large plastic deformation and strain hardening. Thus, the current FRP rebars are not suitable concrete reinforcement where a large amount of plastic deformation prior to collapse in required. The main objective of this study was to develop new type of hybrid FRP rebar. The manufacture of the hybrid FRP rebar was achieved pultrusion, braiding and filament winding techniques. Tensile and interlaminar shear test results of hybrid FRP rebar can provide its excellent tensile strength-strain behavior and interlaminar stress-strain behavior.

  • PDF

Bond Performance of Ductile Hybrid FRP Rebar After Chemical Environmental Exposures (고연성 하이브리드 FRP 리바의 화학적 환경 노출 후 부착 성능)

  • Won Jong-Pil;Park Chan-Gi;Seo Jung-Min;Kong Tae-Woong;Sung Sang-Kyoung;Choi Seok-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.333-336
    • /
    • 2004
  • In this study focuses on bond properties of hybrid FRP rebar after chemical environmental exposure. Hybrid FRP rebar bond specimens were subjected to four type of exposure conditions. Bond properties were investigated by direct bond test. Bond test results, hybrid FRP rebars were found to have better bond strength with concrete than currently using GFRP rebar. Also, hybrid FRP rebar had more than about $80\%$ in bond strength of steel rebar.

  • PDF

Evaluation of Bond Strength for FRP Hybrid Bar According to Coating Methods using Silica Sands (규사 코팅 방법에 따른 FRP Hybrid Bar의 부착강도 평가)

  • Jung, Kyu-San;Park, Ki-Tae;You, Young-Jun;Seo, Dong-Woo;Kim, Byeong-Cheol;Park, Joon-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.118-125
    • /
    • 2017
  • In this study, we examined the bond performance of FRP Hybrid Bars. FRP Hybrid Bars are developed by wrapping glass fibers on the outside of deformed steel rebars to solve the corrosion problem. The surface of the FRP Hybrid Bars was coated with resin and silica sand to enhance its adhesion bonding performance with concrete. Various parameters, such as the resin type, viscosity, and size of the silica sand, were selected in order to find the optimal surface condition of the FRP Hybrid Bars. For the bonding test, FRP Hybrid Bars were embedded in a concrete block with a size of 200 mm3 and the maximum load and slip were measured at the interface between the FRP Hybrid Bar and concrete through the pull-out test. From the experimental results, the maximum load and bond strength were calculated as a function of each experimental variable and the resin type, viscosity and size of the silica sand giving rise to the optimal bond performance were evaluated. The maximum bond strength of the specimen using epoxy resin and No. 5 silica sand was about 35% higher than that of the deformed rebar.

A Degradation Characteristic of FRP Rebars Attacked by Combined Environmental Factors (복합환경인자에 의한 FRP 보강근의 성능저하 특성)

  • Oh, Hong Seob;Moon, Do Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.1-10
    • /
    • 2012
  • In spite of high resistant to corrosion and its strength, over the last two decades, concerns still remain about the durability of FRP materials under severe environmental and thermal exposures. In this paper, authors experimentally examine the combined degradation by thermal and chemical attacks in heterogeneous FRP rebar be made up with various fibers and resins. Five types of Carbon, Glass and Hybrid FRP rebars had manufactured by different process and surface patterns are adopted for the experiments such as weight change, interlaminar shear strength, SEM and FT-IR analysis. FRP specimens were immersed in alkaline or distilled solution up to 150 days and then thermal exposed on 60, 100, 150 and $300^{\circ}C$ for 30 minutes. From the test results, the degradation of FRP bars are influnced by the resin type and manufacturing process as well as the fiber, and ILSS of exposed FRP bar in solutions is slightly increased in initial stage and then decresed with the passing of immersed time. But, in this test, it is observed that the discrepancy of ILSS between degraded by alkaline solution and distilled water is negligible value.

Recommendations of Environmental Reduction Factor of FRP Rebar for Durability Design of Concrete Structure (콘크리트 보강용 FRP 보강근의 내구성 설계를 위한 환경영향계수의 제안)

  • Park Chan-Gi;Won Jong-Pil;Kang Joo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.529-539
    • /
    • 2004
  • The corrosion of steel rebars has been the major cause of reinforced concrete deterioration. FRP(Fiber-reinforced polymer) rebar has emerged as one of the most promising and affordable solutions to the corrosion problems of steel reinforcement in structural concrete. However, FRP rebar is prone to deteriorate due to other degradation mechanisms than those for steel. The high alkalinity of concrete, for instance, is a possible degradation source. Therefore, the USA, Japan, Canada, UK. etc are using environmental reduction factor. Although difference design guidelines were drawn in many, including USA, Japan, Canada, UK etc, recommendations and coefficients that could take into account the long-term behavior of FRP reinforcement were not well defined. This study focuses on recommendation of environmental reduction factor of FRP rebar. Environment reduction factor were decided using durability test result. FRP rebars were subjected to twelve type of exposure conditions including alkaline solution, acid solution, salt solution and deionized water etc. The water absorption behavior was observed by means of simple gravimetric measurements and durability properties were investigated by performing tensile, compressive and short beam tests. Based on the experimental result, environmental reduction factor of hybrid FRP rebar(A), and (C) and CFRP rebar was decided as 0.85. Also, hybrid FRP rebar(B) and GFRP rebar were decided as 0.7 for the environmental reduction factor

Experimental and numerical study about seismic retrofitting of corrosion-damaged reinforced concrete columns of bridge using combination of FRP wrapping and steel profiles

  • Afshin, Hassan;Shirazi, Mohammad R. Nouri;Abedi, Karim
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.231-251
    • /
    • 2019
  • In the present study, a numerical and experimental investigation has been carried out on the seismic behavior of RC columns of a bridge which damaged under corrosive environments and retrofitted by various techniques including combined application of CFRP sheets and steel profiles. A novel hybrid retrofitting procedure, including the application of inner steel profiles and outer peripheral CFRP sheets, has been proposed for strengthening purpose. Seven large-scale RC columns of a Girder Bridge have been tested in the laboratory under the influence of simultaneous application of constant axial load and the lateral cyclic displacements. Having verified the finite element modeling, using ABAQUS software, the effects of important parameters such as the corrosion percentage of steel rebars and the number of CFRP layers have been evaluated. Based on the results, retrofitting of RC columns of the bridge with the proposed technique was effective in improving some measures of structural performance such as lateral strength degradation and higher energy absorption capability. However, the displacement ductility was not considerably improved whereas the elastic stiffness of the specimens has been increased.