• Title/Summary/Keyword: hunter's color value

Search Result 334, Processing Time 0.02 seconds

Determination of Optimal Concentration of LPE (Lysophosphatidylethanolamine) for Postharvest Stability and Quality of Strawberry Fruit (딸기 수확 후 저장기간 연장 및 품질 개선을 위한 LPE (Lysophosphatidylethanolamine) 적정 처리농도 구명)

  • Choi, Ki-Young;Kim, Il-Seop;Yun, Young-Sik;Choi, Eun-Young
    • Journal of Bio-Environment Control
    • /
    • v.25 no.3
    • /
    • pp.153-161
    • /
    • 2016
  • This study aims to determine the optimal maturity of strawberry fruits as affected by the application of lysophosphatidylethanolamine (LPE) and its optimal concentration for postharvest stability and quality. Prior to application of treatments, fruits that were classified into levels of maturity (0%, 50%, 70% and 100%) were air-dried for 40 minutes and stored in the refrigerator at $4^{\circ}C$ for 12 days. Fruits at 70% maturity were dipped into 0, 10, 50 and $100mg{\cdot}L^{-1}$ LPE solutions for 1 minute. A lower range of concentration (0, 2.5, 5, 10 and $25mg{\cdot}L^{-1}$) was applied to fruits at different maturity levels. Data on fresh weight, hardness at vertical and horizontal loading positions, color index and sugar content during storage were collected. Based on fruits with 70% maturity dipped in LPE concentrations, there were no significant differences found on fresh weight, color index and sugar content. However, the application of $10mg{\cdot}L^{-1}$ LPE gave the highest hardness at vertical loading position while $100mg{\cdot}L^{-1}$ had the lowest average. At lower range of LPE concentrations, fresh weight was not significantly affected by LPE application and maturity levels. Hardness of fruits was mainly based on the maturity of the fruits. Increased hardness was observed in the fruits with 70% maturity dipped into the $5mg{\cdot}L^{-1}$ of LPE solution. The hardness and Hunter's $L^*$ and $b^*$ value of 100% matured fruits gave lowest values despite the application of $25mg{\cdot}L^{-1}$ LPE 12 days after storage.

Quality Characteristic of Glasswort (Salicornia herbacea L.) Fermented by Bacillus subtilis (Bacillus subtilis를 이용하여 발효시킨 퉁퉁마디(Salicornia herbacea L.)의 품질 특성)

  • Park, In-Bae;Park, Jeong-Wook;Lee, Young-Jae;Shin, Gung-Won;Kim, Hae-Seop;Jo, Yeong-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.7
    • /
    • pp.902-908
    • /
    • 2009
  • In this study, we investigated the quality of glasswort (Salicornia herbacea L.) fermented by Bacillus subtilis at $37^{\circ}C$ for 48 hours. We determined the changes in temperature, the contents of moisture, crude protein, crude fat, crude ash, carbohydrate, solid content, pH, Brix, salinity, free amino acid, Hunter's color value, electron donating ability (EDA) activities and angiotensin converting enzyme (ACE) inhibition. The contents of crude protein, crude fat, crude ash and carbohydrate after fermentation to mixing ratio of glasswort were $10.45{\sim}30.18%$, $11.69{\sim}19.26%$, $17.65{\sim}25.56%$ and $21.01{\sim}59.10%$ (dry basis), respectively. The solid content, pH, sugar and salinity of fermented glasswort were $39.56{\sim}52.25%$, $6.01{\sim}6.71$, $1.2{\sim}1.7$ Brix and $0.3{\sim}0.6%$, respectively. Total amino acid level of the fermented glasswort was $447.57{\sim}668.89\;mg$/100 g, and was the highest in glasswort mixed with rice bran at a ratio of 1 (w) : 1 (w). Moreover, aspartic acid, asparagine, glutamic acid, alanine, valine, $\beta$-aminoisobutyric acid, lysine and arginine were the main free amino acids. EDA activities and ACE inhibition after fermentation were $46.66{\pm}1.21{\sim}50.87{\pm}1.84%$ and $96.77{\pm}1.23{\sim}97.56{\pm}1.23%$, respectively.

Quality Characteristics of Factory-Style and Handmade-Style Ssamjang (공장 및 수공업 생산 쌈장의 품질 특성)

  • Kim, Seok Young;Park, Bo Ram;Yoo, Seon Mi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.1
    • /
    • pp.100-108
    • /
    • 2016
  • This study investigated the quality characteristics of factory-style ssamjang (FSS) and commercial handmade-style ssamjang (HSS) products. Moisture, crude protein, and crude fat contents were significantly higher in the HSS groups (49.37~62.12%, 9.39~13.46%, and 4.40~8.35%) than the FSS groups (41.94~45.83%, 7.50~9.09%, and 1.81~3.36%). Salt content was higher in the HSS groups (6.33~11.18%) than the FSS groups (6.10~7.57%). Moreover, the average salt content (7.51%) of the HSS groups and the FSS groups was lower than that of commercial ssamjang (8.73%). Hunter's color value was also significantly higher in the FSS groups. However, free sugar, organic acid, and free amino acids contents varied greatly between the FSS groups and the HSS groups, which was likely due to the different manufacturing method, ripening degree of doenjang and the main material used for ssamjang.

Quality characteristics of fermented vinegar prepared with the detoxified Rhus verniciflua extract (무독화 옻 추출물로 제조한 발효식초의 품질 특성)

  • Baek, Seong Yeol;Lee, Choong Hwan;Park, Yoo Kyoung;Choi, Han-Seok;Mun, Ji-Young;Yeo, Soo-Hwan
    • Food Science and Preservation
    • /
    • v.22 no.5
    • /
    • pp.674-682
    • /
    • 2015
  • In this study, vinegar was produced using urushiol-free fermented Rhus verniciflua extract to create a lacquer with added value. The effect of manufacturing conditions on the quality of vinegar using detoxified R. verniciflua extract for fermentation was investigated. The acidity of the vinegar for inoculations with various liquid starter contents was 4.8~4.9%, and it was similar among all treatment groups. The acidity of vinegar was higher when the initial alcohol content was high. The acetic acid yields were 82.8%, 84.4%, 77.7%, and 69.5%, and the maximum yield was observed when the initial alcohol content was 6%. For acetic acid fermentation using different amounts of detoxified R. verniciflua extracts, the acidity of the vinegar with the extract after fermentation was 5.3~5.9%. However, the acidity of vinegar without the extract was 5.5%. The intensity of the brown color was high for vinegar without the extract. Hunter's L values were high for vinegar with an extract content of 2%. Acetic acid (53.3~65.8 mg/mL) was the predominant acid. Arginine ($190.3{\sim}333.3{\mu}g/mL$), proline ($125.6{\sim}290.8{\mu}g/mL$), alanine ($126.1{\sim}270.9{\mu}g/mL$), and glutamic acid ($159.0{\sim}262.4{\mu}g/mL$) were the predominant amino acids in detoxified R. verniciflua vinegar.