• Title/Summary/Keyword: humid air

Search Result 140, Processing Time 0.029 seconds

A Method to Protect Mine Workers in Hot and Humid Environments

  • Sunkpal, Maurice;Roghanchi, Pedram;Kocsis, Karoly C.
    • Safety and Health at Work
    • /
    • v.9 no.2
    • /
    • pp.149-158
    • /
    • 2018
  • Background: Work comfort studies have been extensively conducted, especially in the underground and meteorological fields resulting in an avalanche of recommendations for their evaluation. Nevertheless, no known or universally accepted model for comprehensively assessing the thermal work condition of the underground mine environment is currently available. Current literature presents several methods and techniques, but none of these can expansively assess the underground mine environment since most methods consider only one or a few defined factors and neglect others. Some are specifically formulated for the built and meteorological climates, thus making them unsuitable to accurately assess the climatic conditions in underground development and production workings. Methods: This paper presents a series of sensitivity analyses to assess the impact of environmental parameters and metabolic rate on the thermal comfort for underground mining applications. An approach was developed in the form of a "comfort model" which applied comfort parameters to extensively assess the climatic conditions in the deep, hot, and humid underground mines. Results: Simulation analysis predicted comfort limits in the form of required sweat rate and maximum skin wettedness. Tolerable worker exposure times to minimize thermal strain due to dehydration are predicted. Conclusion: The analysis determined the optimal air velocity for thermal comfort to be 1.5 m/s. The results also identified humidity to contribute more to deviations from thermal comfort than other comfort parameters. It is expected that this new approach will significantly help in managing heat stress issues in underground mines and thus improve productivity, safety, and health.

Effect of Hydrophobic Coating on Silica for Adsorption and Desorption of Chemical Warfare Agent Simulants Under Humid Condition

  • Park, Eun Ji;Cho, Youn Kyoung;Kim, Dae Han;Jeong, Myung-Geun;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.148.2-148.2
    • /
    • 2013
  • We prepared hydrophobic PDMS-coated porous silica as pre-concentration adsorbent for chemical warfare agents (CWAs). Since CWAs can be harmful to human even with a small amount, detecting low-concentration CWAs has been attracting attention in defense development. Porous silica is one of the promising candidates for CWAs pre-concentration adsorbent since it is thermally stable and its surface area is sufficiently high. A drawback of silica is that adsorption of CWAs can be significantly reduced due to competitive adsorption with water molecule in air since silica is quite hydrophilic. In order to solve this problem, hydrophobic polydimethylsiloxane (PDMS) thin film was deposited on silica. Adsorption and desorption of chemical warfare agent (CWA) simulants (Dimethylmethylphosphonate, DMMP and Dipropylene Glycol Methyl Ether, DPGEM) on bare and PDMS-coated silica were studied using temperature programed desorption (TPD) with and without co-exposing of water vapor. Without exposure of water vapor, desorbed amount of DMMP from PDMS-coated silica was twice larger than that from bare silica. When the samples were exposed to DMMP and water vapor at the same time, no DMMP was desorbed from bare silica due to competitive adsorption with water. On the other hand, desorbed DMMP was detected from PDMS-coated silica with reduced amount compared to that from the sample without water vapor exposure. Adsorption and desorption of DPGME with and without water vapor exposing was also investigated. In case of bare silica, all the adsorbed DPGME was decomposed during the heating process whereas molecular DPGME was observed on PDMS-coated silica. In summary, we showed that hydrophobic PDMS-coating can enhance the adsorption selectivity toward DMMP under humid condition and PDMS-coating also can have positive effect on molecular desorption of DPGME. Therefore we propose PDMS-coated silica could be an adequate adsorbent for CWAs pre-concentration under practical condition.

  • PDF

Linking Leaf Functional Traits with Plant Resource Utilization Strategy in an Evergreen Scrub Species Rhododendron caucasicum Pall. along Longitudinal Gradient in Georgia (The South Caucasus)

  • Ekhvaia, Jana;Bakhia, Arsena;Asanidze, Zezva;Beltadze, Tornike;Abdaladze, Otar
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.2
    • /
    • pp.110-121
    • /
    • 2022
  • Leaf functional traits widely have been used to understand the environmental controls of resource utilization strategy of plants along the environmental gradients. By using key leaf functional traits, we quantified the relationships between leaf traits and local climate throughout the distributional range of Rhododendron caucasicum Pall. in eastern and western Georgian mountains (the South Caucasus). Our results revealed, that all traits showed high levels of intraspecific variability across study locations and confirmed a strong phenotypic differentiation of leaf functional variation along the east-west longitudinal gradient in response to the local climate; out of the explored climatic variables, the moisture factors related to precipitation and number of precipitation and dry days for winter and growth seasons were more strongly related to leaf trait variation than the elevation and air temperature. Among studied leaf traits, the leaf specific area (SLA) showed the highest level of variability indicating the different resource utilization strategies of eastern and western-central Rh. caucasicum individuals. High SLA leaves for western-central Caucasian individuals work in relatively resource-rich environments (more humid in terms of precipitation amount and the number of precipitation days in winter) and could be explained by preferential allocation to photosynthesis and growth, while eastern Caucasian samples work in resource-poor environments (less humid in terms of precipitation amount and the number of precipitation days in winter) and the retention of captured resources is a higher priority appearing in a low SLA leaves. However, more evidence from a broader study of the species throughout its distribution range by including additional environmental factors and molecular markers are needed for firmer conclusions of intraspecific variability of Rh. caucasicum.

Atmospheric Characteristics of Fog Incidents at the Nakdong River : Case Study in Gangjeong-Goryeong Weir (낙동강 유역 안개 발생시 기상 특성: 강정고령보 사례를 중심으로)

  • Park, Jun Sang;Lim, Yun-Kyu;Kim, Kyu Rang;Cho, Changbum;Jang, Jun Yeong;Kang, Misun;Kim, Baek-Jo
    • Journal of Environmental Science International
    • /
    • v.24 no.5
    • /
    • pp.657-670
    • /
    • 2015
  • Visibility and Automatic Weather System(AWS) data near Nakdong river were analyzed to characterize fog formation during 2012-2013. The temperature was lower than its nearby city - Daegu, whereas the humidity was higher than the city. 157 fog events were observed in total during the 2 year period. About 65% of the events occurred in fall (September, October, and November) followed by winter, summer, and spring. 94 early morning fog events of longer than 30 minutes occurred when south westerly wind speed was lower than 2 m/s. During these events, the water temperature was highest followed by soil surface and air temperatures due to the advection of cold and humid air from nearby hill. The observed fog events were categorized using a fog-type classification algorithm, which used surface cooling, wind speed threshold, rate of change of air temperature and dew point temperature. As a result, frontal fog observed 6 times, radiation 4, advection 13, and evaporation 66. The evaporation fog in the study area lasted longer than other reports. It is due to the interactions of cold air drainage flow and warm surface in addition to the evaporation from the water surface. In particular, more than 60% of the evaporation fog events were accompanied with cold air flows over the wet and warm surface. Therefore, it is needed for the identification of the inland fog mechanism to evaluate the impacts of nearby topography and land cover as well as water body.

Integrated Building Energy Supply System : An Overview of Technical Trends for Gas Engine Driven Combined Heat and Power System (가스엔진 구동 건물에너지 통합 공급시스템 개발을 위한 기술동향 사례연구)

  • Park, Beungyong;Jeong, Yongdae;Shin, Hyunchul;Cho, Jinkyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.11
    • /
    • pp.612-620
    • /
    • 2017
  • Power consumption in Southeast Asia is steadily increasing due to industrialization and the effects of hot and humid climates. However, there are not enough energy generation facilities and infrastructures to meet the growing demand because it is difficult to secure the construction and operation costs of the transmission and distribution systems. This study aims to develop a gas engine driven heat pump system that supplies heating, cooling and electric power to buildings. This system, besides its normal function to produce heat, has the capacity to generate electricity on a household level. This paper investigates similar cases overseas before developing the system. Through the investigation of commercialized similar systems, the level of technology and market trend of development system were identified. Features and specifications of commercial and industrial systems will be used for system development.

EFFECTS OF WATERY VAPOR CONCENTRATION ON DROPLET EVAPORATION IN HOT ENVIRONMENT

  • Lee, M.J.;Kim, Y.W.;Ha, J.Y.;Chung, S.S.
    • International Journal of Automotive Technology
    • /
    • v.2 no.3
    • /
    • pp.109-115
    • /
    • 2001
  • A study has been conducted to clarify the effect of watery vapor concentration in hot ambient on droplet evaporation. Droplets of water, ethanol, n-hexadecaneand n-heptane were used in this experimental study. Ambient conditions are fixed at 470 K in temperature, 0.1 MPa in pressure and 2 m/s in velocity of ambient air. Watery vapor concentration was changed 0%~40% by 10% by add water to air. To obtain the time histories of droplet diameter after exposed in ambient, a suspended droplet in hot and humid ambient stream was synchronized with a back flash light, and enlarged droplet images were taken by a CCD camera. The evaporation rate constant of water droplet decreases slightly with the vapor concentration because diffusion velocity reduction of droplet vapor occurs on the surface. The values of ethanol and n-heptane droplet actively increase by effect that water from condensation of vapor flows into the droplet. The evaporation rate constant of n-hexadecane which has higher boiling point than water increases within around 30% of the concentration.

  • PDF

Adsorption Characteristics of Short Grain Rough Rice (단립종 벼의 수분흡습특성)

  • 김종순;고학균;송대빈
    • Journal of Biosystems Engineering
    • /
    • v.23 no.5
    • /
    • pp.465-472
    • /
    • 1998
  • In this study short gain rough rice(Chu-cheong) with initial moisture content of around 12%(w.b.) was exposed to 3 levels of relative humidity(70, 80 and 90%) and 3 levels of temperature(20, 25 and 3$0^{\circ}C$) of the air, in order to evaluate the adsorption characteristics of rough rice and the rate of cracked kernels which will serve as the basic data when developing the quality adjusting equipment. The result showed that the moisture content of rough rice increased rapidly during the early stages of moisture adsorption like other grains, and at least 70% of the adsorption occurred within the first 24 hours of exposure to the humid environment. Adsorption rate was more related to relative humidity than the temperature of air stream, and the higher the relative humidity, the higher the adsorption rate. And the Page's equation predicted best the adsorption process of this study. Experimental results for the crack generation during the adsorption process showed that the higher the relative humidity the more the cracked kernels, and that the temperature had little effect. An empirical equation was developed to predict the crack ratio for the conditions of this study, and Nishiyama model predicted better the crack generation than Hoerl model.

  • PDF

Analysis of Seasonal Characteristics about Long-Range Transport and Deposition of Sulfur (황(S)의 장거리 이동 및 침적량에 대한 계절별 특성 분석)

  • Hong, Sung-Chul;Lee, Jae-Bum;Moon, Kyung-Jung;Song, Chang-Keun;Bang, Cheol-Han;Choi, Jin-Young;Kim, Jeong-Soo;Hong, You-Deog
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.1
    • /
    • pp.34-47
    • /
    • 2010
  • Long-range transport of air pollutants was simulated using Comprehensive Acid Deposition Model (CADM) and Yonsei University-Sulfuric Acid Deposition Model (YU-SADM). For the simulation, weather patterns that represent the four seasons were derived through a clustering analysis with 5-years of meteorological data. The simulation result showed that in spring, influenced by strong low pressure from China, air pollutants of moved to the Korean Peninsula. In summer, humid air moved into the Korean Peninsula across the Yellow Sea while the north pacific high pressure extended, making the concentration of air pollutants lower than that in the other seasons. In autumn, air pollutants were transported by the northwest wind caused by the movement of high pressure over the Yellow Sea, while in winter air pollutants were influenced by northwest winds from continental highs. The amount of air pollutants in each season showed that high amount of pollutants were transported in winter due to the strong northwest wind. The in-flows were 3 to 8 times higher than those of the other seasons, and out-flows were about as twice as high. The amount of wet deposition in summer and autumn increased significantly compared to the amount in the other seasons due to the increase of rainfall. Source-receptor relationship analysis for sulfur showed that 70 to 91 precent of the total deposition came from the self-contribution by the Korean Peninsula. In winter, contribution from China was about 25 percent of the total deposition which was higher amount than any other season.

Adsorption and Desorption of Chemical Warfare Agent Simulants on Silica Surfaces with Hydrophobic Coating

  • Park, Eun Ji;Kim, Young Dok
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.1967-1971
    • /
    • 2013
  • Aim of our study is finding adsorbents suitable for pre-concentration of chemical warfare agents (CWAs). We considered Tenax, bare silica and polydimethylsiloxane (PDMS)-coated silica as adsorbents for dimethyl methylphosphonate (DMMP) and dipropylene glycol methyl ether (DPGME). Tenax showed lower thermal stability, and therefore, desorption of CWA simulants and decomposition of Tenax took place simultaneously. Silica-based adsorbents showed higher thermal stabilities than Tenax. A drawback of silica was that adsorption of CWA simulant (DMMP) was significantly reduced by pre-treatment of the adsorbents with humid air. In the case of PDMS-coated silica, influence of humidity for CWA simulant adsorption was less pronounced due to the hydrophobic nature of PDMS-coating. We propose that PDMS-coated silica can be of potential importance as adsorbent of CWAs for their pre-concentration, which can facilitate detection of these CWAs.

Temporal Dynamics of Botryosphaeria dothidea Spore Dispersal in Apple Orchards and Related Climatological Factors (사과원에서 Botryosphaeria dothidea 포자 방출의 경시적 변화 및 관련된 기상요소)

  • 김기우;박은우;김성봉;윤진일
    • Korean Journal Plant Pathology
    • /
    • v.11 no.3
    • /
    • pp.230-237
    • /
    • 1995
  • Airborne and waterborne ascospores and conidia of Botryosphaeria dothidea were collected in apple orchards at Suwon and Chunan in 1992 through 1994. Both waterborne and airborne spores were first detected in mid April to early May. Thereafter, spores were abundant in early June to late August and present until early December. Rainwater collections contained much more conidia than ascospores during the apple growing seasons. Airborne ascospores catches, which were also detected on humid days without measurable rainfall, were much more than airborne conidia catches. High amounts of ascospores were detected in early times of apple growing season, whereas most conidia catches occurred in later times of the season. The number of waterborne conidia and airborne ascospores was positively correlated with mean daily maximum, minimum, and average air temperatures during the trapping periods (p=0.01). However, no significant correlation was found between the number of spores and the total precipitation during the trapping periods.

  • PDF