• 제목/요약/키워드: humid air

검색결과 140건 처리시간 0.025초

하절기, 석재 모형돔의 외피 유형별 실내환경 요소에 관한 연구 (A study on indoor environmental elements of the granite model dome in different envelope materials during summer season)

  • 공성훈
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.898-902
    • /
    • 1999
  • During summer season, the weather condition of Korea is hot and humid. So humidity elements are very important relating to building envelope condition. The purpose of this investigation is to measure and analyze characteristics of summer's environmental elements such as relative humidity, dry bulb temperature and air velocity in the clay/cement envelope materials using a granite dome model. According to the variation of exterior humidity, the state of interior relative humidity for clay model has an equal tendency, although a little range of variation is shown in comparison to the cement model.

  • PDF

Experimental Study on Heat and Mass transfer Coefficient Comparison Between Counterflow Types and Parallel in Packed Tower of Dehumidification System

  • Sukmaji, I.C.;Choi, K.H.;Yohana, Eflita;Hengki R, R.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.162-169
    • /
    • 2009
  • In summer electrical energy is consumed in very high rate. It is used to operate conventional air conditioning system. Hot and humid air can germinate mould spores, encourage ill health, and create physiological stress (discomfort). Dehumidifier solar cooling effect is the one alternative solution saving electrical energy. We use surplus heat energy in the summer, to get cooling effect and then to get human reach to comfort condition. These devices have two system, dehumidifier and regeneration system. This paper will be focus in dehumidifier system. Dehumidifier system use for absorbing moisture in the air and decreasing air temperature. When the liquid desiccant as strong solution contact with the vapor air in the packed tower, it works. The heat and mass transfer performances of flow pattern in the packed tower of dehumidifier are analyzed and compared in detail. In this experiment was introduced, the flow patterns are parallel flow and counter flow. The performance of these flow patterns will calculate from air side. Which is the best flow pattern that gave huge mass transfer rate? The proposed dehumidifier flow pattern will be helpful in the design and optimization of the dehumidifier solar cooling system.

  • PDF

KEOP 집중관측자료를 활용한 2004년 2월 4일 황해 남부해상의 강설세포 형성과정 특성 분석 (Characteristics of Snow-cell Formation Processes over the Southern Part of Yellow Sea on 4 February 2004 using the KEOP Intensive Observation Data)

  • 김백조;조천호;류찬수;정효상
    • 한국환경과학회지
    • /
    • 제16권12호
    • /
    • pp.1401-1409
    • /
    • 2007
  • The formation mechanism of the snow cells of the Yellow Sea associated with snowfall over the southwestern part of Korea on 4 February, 2004 has been investigated using special upper-air sounding and radar data obtained for the KEOP(Korea Enhanced Observing Period) Intensive Observing Period(IOP). Results show that the types of snow cells for the selected period are classified into L(Longitudinal)-mode, Low-level convergence, and T(Transverse)-mode with their evolution from L-mode to T-mode. In particular, the existence of low-level warm and humid layer associated with temporally southwesterly inflow for about 4 hours provides a favorable condition in forming the T-mode snow cells. The vertical depth of the T-mode snow cells is deeper than that of L-mode ones due to the southeastward penetration of cold and dry air into relatively warm and humid air. In addition, it is found that wind shear vector between 1000 hPa and 600 hPa is one of the factors which control the orientation of snow cells in formation embedded into the snowbands for the both modes.

미교란 모델을 이용한 포화 습공기 천음속 2상 유동에서의 응축현상 (Condensation processes in transonic two-phase flows of saturated humid air using a small-disturbance model)

  • 이장창
    • 한국항공우주학회지
    • /
    • 제31권6호
    • /
    • pp.23-29
    • /
    • 2003
  • 얇은 익형 주위에 다양한 응축 과정을 수반하는 상대 습도가 100%인 포화 습공기 천음속 이상 유동에 대하여 연구하였다. 본 연구는 Rusak 과 Lee[11, 12]가 발전시킨 그리고 응축에 의한 열 증가의 효과를 포함하는 확장된 천음속 미 교란 모델을 사용하였고, 응축 과정은 서로 다른 두 가지 형태의 응축 과정을 고려한다. 먼저, 비 평형 균질 과정(nonequilibrium and homogeneous process)에서의 응축 질량비는 고전적 핵형성 이론과 작은 물방울 성장이론에 따라 계산되고, 평형과정(equilibrium process)에서의 응축 질량비는 등엔트로피 가정으로부터 계산된다. 유동 방정식과 응축 방정식들은 반복수치 계산법을 사용하여 그 해를 구하였다. 상류 유동 조건을 같게 하여 얻은 수치계산 결과들은 유동구조, 응축장, 그리고 익형 표면에서의 압력분포 등을 묘사한다. 유동특성, 즉 충격파의 위치와 강도 그리고 익형의 압력분포 등은 서로 다른 두 응축과정에서 각각 다른 유동특성을 나타냈다. 하지만, 각각의 응축과정에서 응축 결과로 생긴 열 증가는 유동거동에 상당한 변화를 야기 시키고 익형의 공력 성능에도 상당한 영향을 미친다.

지하철 역사 지하수를 이용한 에어와셔에 관한 연구 (Study on Air Washer using Underground Water in the Subway Stations)

  • 김동규;김회률;정용현;김종열;금종수
    • 수산해양교육연구
    • /
    • 제22권4호
    • /
    • pp.604-610
    • /
    • 2010
  • Busan subway transportation system has been established a key role in the society last 20 years. However many people are suffering from hot and humid environment at subway station and platform due to deteriorated ventilation system as well as insufficient air conditioning system in existing stations and platforms. As a result, these systems require revitalization. There is about 5400tons of low temperature underground water is generated from subway stations every day. By using this method and air washer we are trying to lower the temperature. Air washer is commonly used for removing humidity but in this experiment it will be used as air precooling. This research offers result of experiment using air washer system to lower the temperature in large spaces like subway station. The experiment result has shown when L/G was the same, at condition which water spray temperature at $18^{\circ}C$ resulting inlet and outlet temperature difference larger. Also, in the same water spray temperature conditions, larger L/G condition showed a greater temperature difference. LCC evaluation of both system were shown that air washer system of using underground water will save 53% of the initial cost than refrigeration system, and save 75% of operating cost.

액적의 증발에 미치는 수증기 농도의 영향 (Effects of Water Vapor Concentration on a Droplet Evaporation)

  • 김용우;이명준;하종률;정성식
    • 한국분무공학회지
    • /
    • 제4권1호
    • /
    • pp.27-33
    • /
    • 1999
  • An experimental study has been conducted to clarify the effect of vapor on droplet evaporation. Droplets of water, ethanol, n-hexadecane and n-heptane were exposed in air stream. Temperature, pressure, and flow velocity in the ambient air are 470K, 1 atm, and 2m/s, respectively. Measurements are carried out for the wide range of water vapor concentration$(0%\sim40%)$. To obtain the time histories of droplet diameter, suspended droplet in hot and humid air stream was synchronized with a back flash light, and enlarged droplet images were taken on a CCD camera. With the vapor concentration increasing, the evaporation rate constant of water droplet decrease slightly and the droplet of ethanol and n-heptane increase actively. The evaporation rate constant of n-hexadecane which has higher boiling point than water increases within around 30% of the concentration.

  • PDF

다공질 ZnO의 전기적 특성, 환원성 가스 감응 특성 및 습도의 영향 (Electrical Conductivity, Flammable Gas Response and Humidity Effect of Pporous ZnO)

  • 윤당혁;최경만
    • 한국세라믹학회지
    • /
    • 제32권11호
    • /
    • pp.1283-1291
    • /
    • 1995
  • The electrical conductivity, flammable gas response and their humidity effect of porous ZnO, added with 5wt% corn starch as the fugitive phase, were examined. Porous ZnO showed different conductivity curves during increasing and decreasing temperature, and its electrical conductivity decreased rapidly by desorption of OH- between 20$0^{\circ}C$ and 35$0^{\circ}C$ when the temperature increased in dry air. The CO gas sensitivity of starchadded ZnO samples was higher than that of ZnO without starch addition. The sensitivity of porous, starchadded ZnO to 200ppm CO gas was much less in humid atmosphere than in dry atmosphere since water vapor increased the conductivity of porous ZnO in air, but decreased the conductivity in CO. Maximum sensitivity to 200 ppm CO gas balanced by air was about 100 in dry atmosphere and about 15 in RH 23% atmosphere.

  • PDF

다른 친수성능을 가진 두 표면에서의 착상에 관한 연구 (A Study of Frost Formation on Different Hydrophilic Surfaces)

  • 김철환;신종민;하삼철
    • 설비공학논문집
    • /
    • 제14권6호
    • /
    • pp.519-524
    • /
    • 2002
  • An experimental study has been conducted to investigate the effects of surface energy on frost formation. Test samples with two different surfaces are installed in a wind tunnel and exposed to a humid airflow. Dynamic contact angles (DCA) for these surfaces are $23^{\circ}\;and\;88^{\circ}$, respectively. The thickness and the mass of frost layer are measured and used to calculate the frost density while frost formation is visualized simultaneously with their measurements. Results show that frost density increases as time increases at specific test conditions. The air Reynolds number, the airflow humidity and the cold plate temperature are maintained at 12,000, 0.0042 kg/kg and $-21^{\circ}C$, respectively. The surface with a lower DCA shows a higher frost density during two-hour test, but no differences in the frost density have been found after two hours of frost generation. Empirical correlations for thickness, mass and density are assumed to be the functions of the test time and DCA.

실내수영장의 열, 기류 및 습도환경에 관한 연구 (A Study of Thermal, Air-flow and Humidity Conditions in an Indoor Swimming Pool)

  • 강석윤;이태구;문종선;이재헌
    • 설비공학논문집
    • /
    • 제15권8호
    • /
    • pp.683-689
    • /
    • 2003
  • The thermal comfort of an indoor swimming pool is different from that of general indoor space because of the characteristics of large space and the wear conditions of swimmers. Dew condensation by humid air not only makes mold on the floor, wall and roof but also decreases the durability of buildings by penetrating into their structures. In this study, the characteristics of the flow field, the temperature field and the humidity distribution in an indoor swimming pool have been examined by the numerical method to estimate the level of thermal comfort and the generation rate of dew condensation. The results showed that the dew condensation regions were spread widely at the eastern parts of the swimming pool due to the insufficient air flow rate with low velocity and temperature. To prevent the generation of dew condensation in a region, a sufficient warm air flow rate should be supplied to make an air mixing. The values of PMV at horizontal plane of 1.5 m height have the range of -1.0∼1.2, which means the suitable level for swimmers.

충진재(Filler)가 대향류형(Counter Flow Type) 냉각탑 유동에 미치는 영향에 대한 연구 (Effect of Filler on the Flow of Counter Flow Type Cooling Tower)

  • 신정훈;이준경;진철규
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.565-572
    • /
    • 2022
  • The white plume from the cooling tower can be generated by mixing between discharging hot and humid air and cold air outside. This causes various problems such as icing, traffic disturbances, and fire factors in the vicinity, moreover it can also damage the image of a company. Various methods can be used to prevent white plume, one of them is to install a heat exchanger at the outlet of the cooling tower so that the heat exchanger transfers as much heat as possible to lower the temperature. Therefore the air flow path in the cooling tower should be optimized. Installation of the filler can be used to make the air flow better, thus we investigate the effect of filler on the air flow using CFD method. The pressure and velocity profile in the cooling tower could be acquired by the calculations. The filler made the velocity of the air entering the heat exchanger uniform this was because high flow resistance of the filler suppresses the generation of eddy in the cooling tower. But the total air pressure drop increased about 2 times with filler because the pressure drop by the filler accounted for about 60% of the total pressure drop.