• Title/Summary/Keyword: humic-acid

Search Result 357, Processing Time 0.026 seconds

Preparation of poly(vinyl alcohol)-coated Composite Nanofiltration Membranes on Various Support Membranes (다양한 지지체 분리막 위에 poly(vinyl alcohol)이 코팅된 나노복합막의 제조)

  • Lee Kew-Ho;Kim In-Chul
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.34-43
    • /
    • 2005
  • The poly(vinyl alcohol) (PVA)-based thin film composite nanofiltration (NF) membranes were prepared by coating polysulfone ultrafiltration membranes, sulfonated polyethersulfone and polyamide NF membranes with aqueous PVA solution by a pressurizing method. The PVA was cross-linked with aqueous glutaraldehyde solution. The NF membranes coated with a very low concentration of PVA on all the support membranes was successfully prepared. With increasing the hydrophilicity of the support membranes, the water flux increased. Especially, ζ-potential of negatively charged polyamide NF membrane was reduced by coating the membrane with PVA. A fouling experiment was carried out with positively charged surfactant, humic acid, complex of humic acid and calcium ion and bovine serum albumin. A non-coated polyamide NF membrane was significantly fouled by various foulants. The fouling process when using humic acid and protein occurred at the isoelectric point. There was severe fouling when using humic acid and adding bivalent cations. By coating the polyamide NF membrane with aqueous PVA solution, fouling was reduced. The polyamide NF membrane coated with PVA was resistant to the acidic and basic solution.

Inhibitory Effect of Nitrate on Fe(III) and Humic acid reduction in Shewanella putrefaciens DK-1

  • Lee, Il-Gyu;Kim, Sang-Jin;Ahn, Tae-Young
    • Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.180-182
    • /
    • 2000
  • The inhibitory effects of nitrate on Fe(III) and humic acid reduction were examined in Shewanella putrefaciens DK-1. Therer is no difference in Fe(III) reduction until 25 hours between cultures using Fe(III) production was decreased drastically when Fe(III) and nitrate were used as electron acceptors. The production of AHQDS(2,6-anthrahydroquinon disulfonate) showed similar patterns when AQDS alone and both AQDS and Fe(III) were used as electron acceptors. When AQDS(2,6-anthraquinon disulfonate) and nitrate were used as electron acceptors, the production of AHQDS was completely inhibited.

  • PDF

Treatment of Heavy Metal Wastewater by Pricipitation and Adsorption (침전법과 흡착법을 이용한 중금속 처리)

  • 심순보;이요상
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1992.07a
    • /
    • pp.325-328
    • /
    • 1992
  • The purpose of this research is to develop the technique of heavy metal removal from wastewater. The research is divided into two parts, one part uses complex precipitation and the other uses adsorption. In the first part of the study, humic acid is used as the complex agent, humic acid is a polyelectrolyte with a high complexation affinity. Lead, copper, zinc and cadmium were studied for their complex precipitation efficiencies. In the batch studies, humic acid was effective in removing 100% of the lead and 48.2% of the copper respectively from wastewater without anytreatment. The efficiency of cadmium and zinc, however, was very low. In the second part of the study, wastewater is introduced at the top of a silicagel adsorption column and then bottom effluent concentration is analyzed. The results of the analysis are used to draw a breakthrough curve.

  • PDF

The Influence of Coexisting Material on the Photocatalytic Removal of Humic Acid (광촉매를 이용한 Humic Acid 광부해시 공존물질이 광분해에 미치는 영향)

  • Ryu, Seong Pil;Hyeon, Gyeong Ja;O, Yun Geun
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.279-288
    • /
    • 2004
  • This study aimed at improving the $TiO_2$ photocatalytic degradation of HA. A set of tests was first conducted in the dark to study the adsorption of HA at different coexisting material concentration. Adsorption rate increased with adding cation ion but decreased with adding bicarbonate ion. The photodegradation of HA in the presence of UV irradiation was investigated as a function of different experimental condition: initial concentration of HA, $TiO_2$ weight, pH, air flow rate and coexisting material. It was increased either at low pH or by adding cation ion. The increase of cation strength in aqueous solution could provide a favorable condition for adsorption of HA on the $TiO_2$ surface and therefore enhance the photodegradation rate. It was found that bicarbonate ions slowed down the degradation rate by scavening the hydroxyl radicals.

Studies on the Characteristics of Humic Acid and its Utilizations. (Ⅲ) Utilizations of Humic Acid (Nitrohumates) (土炭흄酸의 性狀및 應用에 關한 硏究 흄酸(니트로흄酸鹽)의 應用 (第3報))

  • Won Taik Kim
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.62-67
    • /
    • 1969
  • The adaptabilities of various nitrohumates (-K, -Na and $-NH_4$ salt) as a soil conditioner and a raw material for soluble phosphatic fertilizer were studied. 1. Nitrohumates (especially $-NH_4$ salt) protect the soil from fissures and control the phosphoric acid adsorptive functions of soils considerably. 2. Most effective nitrohumic acids as a soil conditioner were prepared with 15% $HNO_3$ solution composed of five times of original humic acids (by weight) at $80^{\circ}C$ for 2 hrs under continuous stirring. 3. When 50% (by weight) of $NH_4$-nitrohumate were added to apatites in water and boiled for 2 hrs, maximum 26% of $P_2O_5$(apatite contains 37% of $P_2O_5$) were changed into water soluble forms.

  • PDF

Studies on the Characteristics of Humic Substances and Fractionations of Nitrogen in Paddy Soils (답토양(畓土壤)의 부식(腐植)과 질소형태(窒素形態)에 관(關)한 연구(硏究))

  • Kim, Young-Sig;Whang, Kwang-Nam;Kim, Weon-Chul;Park, Moon-Hee;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.3
    • /
    • pp.239-244
    • /
    • 1986
  • This study was conducted to investigate the characteristics of humic substances and the fractional distribution of organic nitrogen in Korean paddy soils. The results are obtained as follows: 1. The content of humus in soils used was 665-2680 mg/100g and the average contents of humic acid in normal paddy soils and in sandy paddy soils were 1436 mg/100g, 970 mg/100g respectively. 2. The humic acid diagrams classed by Kumada method belong to B type, P type and Rp type. 3. The content of Mineral - N to Total - N was 1.04-2.86% and the average contents of that in sandy paddy soils and in normal paddy soils were 1.72% and 1.75% respectively. 4. The fractionations of acid hydrolysable organic - N in sandy paddy soils were Amino acid - N (31.52%), Humin - N (20.63%), Amino sugar - N (18.70%), and Unknown - N (25.73%).

  • PDF

Adsorption-Desorption, Leaching, and Degradation Pattern of Fungicide Fluazinam in the Soil Environment (살균제 Fluazinam의 토양환경 중 흡.탈착, 용탈 및 분해양상)

  • Hu, Won;Lee, Seog-June;Kim, Jang-Eok
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.128-133
    • /
    • 1997
  • This study was conducted to evaluate the adsorption, desorption, leaching and degradation pattern of fungicide fluazinam in the soil environment under the laboratory conditions. The mode of isothermal adsorption of fluazinam in soil was coincident with the Freundlich equation. The adsorption amount of fluazinam was much higher on soils containing organic matter than on soils oxidized with hydrogen peroxide. The presence of organic matter, humic acid or fulvic acid, increased the adsorption amount of fluazinam on soils. The Freundlich constant K was much higher in soil added with humic acid than in soil added with fulvic acid. The desorption ratio of fluazinam adsorbed to soil was increased by removal of organic matter. In leaching experiment using soil column, the fluazinam applied on the soil surface was not moved down to the bottom of soil and was not detected in leachate water. The degradation of fluazinam was faster in Soil I with rich organic matter than Soil II with poor organic matter, in non-sterilized soil than sterilized soil, and in flooded soil than unflooded soil.

  • PDF

Performances of submerged membrane photocatalysis reactor during treatment of humic substances

  • Halim, Ronald;Utama, Robert;Cox, Shane;Le-Clech, Pierre
    • Membrane and Water Treatment
    • /
    • v.1 no.4
    • /
    • pp.283-296
    • /
    • 2010
  • During the disinfection of potable water, humic substances present in the solution react with chlorine to form potential carcinogenic compounds. This study evaluates the feasibility of using a submerged membrane photocatalysis reactor (SMPR) process for treatment of humic substances through the characterization of both organic removal efficiency and membrane hydraulic performance. A simple SMPR was operated and led to the removal of up to 83% of the polluting humic matters. Temporal rates of organic removal and membrane fouling were found to decrease with filtration time. Using tighter membrane in the hybrid process resulted in not only higher organic removal, but also more significant membrane fouling. Under the experimental conditions tested, optimum $TiO_2$ concentration for humic removal was found to be 0.6 g/L, and increasing initial pollutant concentration expectedly resulted in a more substantial membrane fouling. The importance of the influent nature and pollutant characteristics in this type of treatment was also assessed as various water sources were tested (model humic acid solution vs. local water containing natural organic matters). Results from this study revealed the promising nature of the SMPR process as an alternative technique for organic removal in the existing water treatment system.

Degradation of Humic Acid and Formation of Formaldehyde in PEROXONE Processes (PEROXONE(Ozone/Hydrogen Peroxide)공정에서의 부식산 분해 및 포름알데히드의 생성)

  • Kim, Kei Woul;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.80-87
    • /
    • 2001
  • This research was studied the action of the coupling ozone-hydrogen peroxide on aqueous humic acid. PEROXONE process is enhanced the generation of hydroxyl radicals which is effective for degradation of organic matters. Therefore the changes of $UV_{254}$ and TOC were investigated through the change of concentrations, injection time of $H_2O_2$, initial pH of aqueous humic acid and concentrations of radical savenger as $HCO_3{^-}$ in the PEROXONE processes. And the GC/ECD was used to detect the formaldehyde formed by ozonation of humic acid. From the experimental results, concentrations and injection time of $H_2O_2$ and initial pH in solution in the PEROXONE processes were very important for enhancing the efficiency of degradation in humic acid. The results indicated that removal efficiency of TOC was the highest when concentration of $H_2O_2$ was 5mg/L, injection time of $H_2O_2$ was 5 minutes and initial pH in solution was 10.5. And presence of alkalinity in solution was reduced the efficiency of treatment. The formaldehyde were formed less PEROXONE processes than only ozone. When initial pH in solution were changed from 3.5 to 10.5, the formaldehyde were formed highest concentration at pH 5.

  • PDF

Formation of Hydrogen Peroxide by the Ozonation of Aqueous Humic Acid (수중 부식산의 오존처리시 생성되는 과산화수소의 농도 변화에 대한 연구)

  • Kim, Kei Woul;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.659-665
    • /
    • 2000
  • The changes in $UV_{254}$ and concentrations of $H_2O_2$ formed by ozonation of aqueous humic acid in ozone/high pH, peroxone process and in the presence of radical scavenger, $HCO_3{^-}$ were investigated. This study confirmed that the formation of $H_2O_2$ by ozonation may undergo different reaction pathways compared to those of $UV_{254}$ reduction in the degradation of the humic acid. The concentration of $H_2O_2$ produced by ozonation was found to be increased with decreasing pH of the sample solution due to the higher stability of ozone molecules at acidic conditions. On the while, $UV_{254}$ reduction was found to be higher at alkaline conditions or larger amount of $H_2O_2$ additions as a radical promoter in which the producing of ${\cdot}OH$, ${\cdot}HO_2$ radicals can be more favorable. From the results, it has been suggested that the formation of $H_2O_2$ by ozonation depends mainly on the direct reactions of ozone with humic acid molecules, while $UV_{254}$ reduction is affected by both the indirect reactions of the radicals and direct reactions of ozone with humic acid.

  • PDF