• 제목/요약/키워드: humic acids

검색결과 98건 처리시간 0.027초

수중 Humic Acid의 효율적 응집처리와 잔류알루미늄 감소방안에 관한 연구 (A Study on the Coagulation of Aquatic Humic Acid and Reducing Residual Aluminum)

  • 김수연;정문호;두옥주
    • 한국환경보건학회지
    • /
    • 제24권2호
    • /
    • pp.38-46
    • /
    • 1998
  • The purpose of this study is to evaluate and compare the effective coagulation of commercial humic acid which is well known as major precursor of trihalomethane, with LAS and PAC and to quantify the residual aluminum in the treated water. Then the optimum pH, the dosage of coagulant were determined. 1. Humic acid concentrati6n, UV absorbance and color were well correlated and UV absorbance(254 nm) and color seem to be used in quntificative analysis of humic acid of same kind. 2. Optimal dosage of LAS and PAC increase as humic acid concentration increases. And optimal pH range for coagulation using LAS is pH 5.5-7.0 and pH 3.5-6.5 for PAC. Within these ranges the removal efficiency is 90-99%. 3. The results of quantification of residual aluminum in treated water shows that minimal aluminum remains on the optimal coagulation condition. But the residual aluminum increses as the dosage of coagulant is beyond the optimal range. Thus the dosage of coagulant should be chosen with the condition on which humic acid removal is maximum and the residual aluminum concentration is minimum. 4. In the water treatment process the raw water pH range is 6.5-8.0, and it seems to be possible to remove humic acid by charge neutralization not by sweep floc. But it should be considered that different commercial humic acids have different physical and chemical characteristics.

  • PDF

토양 부식질의 추출 및 특성 (Isolation and Characterization of Soil Humic Substances)

  • 신현상;이창훈;유지호;정근호;이창우
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.191-194
    • /
    • 2002
  • Humic acid, fulvic acid and humin present in volcanic ash soil were isolated by IHSS standard procedure and their characteristics were analyzed as a basic study to evaluate the effect of humic substances on the behaviour of pollutants in contaminated surface soil. The volcanic ash soil contained 42.1 % of total organic matter based on the oven-dried soil, and humin, humic and fulvic acids corresponded to 67.5 %, 15.2 %, 7.6 % of TOM respectively. Structural informations of the humic fractions were obtained from their elemental analysis and IR, CPMAS C-13 NMR spectral analysis and the differences among them are discussed with their C/H, O/C ratios and distributions of carbon types in the molecules.

  • PDF

토양부식산(土壤腐植酸)의 형태별(形態別) Amino 산(酸) 함량(含量)에 관(關)한 연구(硏究) (A Study on the Amino Acid Components Soil Humus Composition)

  • 김정제;이위영
    • 한국토양비료학회지
    • /
    • 제21권3호
    • /
    • pp.254-263
    • /
    • 1988
  • 토양부식산(土壤腐植酸) 형태(形態)(Rp, B, A, P)별(別) 부식산(腐植酸)과 fulv 산중(酸中) amino 산(酸)의 함량(含量)과 조성(組成)을 규명코자 부식산(腐植酸)과 fluv산(酸)을 각각(各各) 분수(分雖) 정렬(精裂)하여 분석(分析)해 얻은 결과(結果)를 요약(要約)하면 다음과 같다. 1. 부식(腐植)의 조방(粗放) 전부식량(全部植量)$(H_T)$, 부식산량(腐植酸量)(a), fulv 산량(酸量)(b), 색조계수(色調係數)$({\Delta}logK)$$Rp{\rightarrow}B{\rightarrow}A{\rightarrow}P$형(型)으로 갈수록 적어졌고 전질소(全窒素) 전탄소(全炭素)도 같은 경향이었다. 2. 부식산중(腐植酸中) amino 산(酸)의 함량(含量) 및 조성(組成) 가. 부식산(腐植酸)의 형태별(形態別) 전(全) amino 산(酸)의 함량(含量)은 침엽수(針葉樹) 임토양(林土壤)에서는 Rp>B>A>P형(型)의 순(順)이었으나 활엽수(闊葉樹) 임토양(林土壤)에서는 P>A>Rp>B형(型)의 순(順)이었다. 전(全) amino산(酸)과 부식조성(腐植組成)과의 관계(關係)에서 침엽수림토양(針葉樹林土壤)에서 전탄소(全炭素)${\Delta}logK$와는 정(正)의 상관(相關)이 있었고 C/N율(率)과는 부(負)의 상관(相關)이 있었다. 활엽수림토양(闊葉樹林土壤)에서는 유의상관(有意相關)이 없었다. 나. 형태문(形態問) 산성(酸性), 중성(中性), 염기성(鹽基性) amino 산(酸)의 함량비(含量比)는 침엽수림토양(針葉樹林土壤)에서 산성(酸性) amino 산(酸)은 P>Rp>B>A 형(型)의 순(順), 중성(中性) amino 산(酸)은 Rp>B>A>P형(型)의 순(順), 염기성(鹽基性) amino 산(酸)은 B>A>Rp>P형(型)의 순(順)이었다. 함량(含量)은 중성(中性)>산성(酸性)>염기성(鹽基性) anomi 산(酸)의 순(順)이었다. 활엽수림토양(闊葉樹林土壤)에서는 산성(酸性) amino 산(酸) A>P>B>Rp형(形)의 순(順), 중성(中性) amino 산(酸)은 P>Rp>A>B 형(形)의 순(順), 염기성(鹽基性) amino 산(酸)은 $$P{\geq_-}$$ A > $$B{\geq_-}Rp$$형(形)으로 근소한 차이였다. 다. 형태별(形態別) 각(各) amino 산(酸) 함량(含量)에서는 전체적으로 aspartic acid, glycine, glutamic acid 가 많았고 histidine, tyrosine, methionine이 적었다. 3. Fulv 산중(酸中) amino 산(酸)의 함량(含量) 및 조성(組成) 가. 형태별(形態別) 전(全) amino 산(酸)의 함량(含量)은 두 토양(土壤) 공(共)히 Rp>B>P>A 형(形)의 순(順)이었다. 침엽수림토양(針葉樹林土壤)에서 전(全) amno산(酸)과 전탄소(全炭素), ${\Delta}logK$와 정(正)의 상관(相關)이 있었고 활엽수림토양(闊葉樹林土壤)에서는 전질소(全窒素), 전부식량(全腐植量)$(H_T)$, 부식산량(腐植酸量)(a), 색조계수(色調係數)$({\Delta}logK)$와는 정(正)의 상관(相關)이 있었고 C/N율(率)과는 부(負)의 상관(相關)이 있었다. 나. 형태문(形態問) 산성(酸性), 중성(中性), 염기성(鹽基性) amino 산(酸)의 함량비(含量比)는 두 토양(土壤) 공(共)히 Rp>B>P>A형(形)의 순(順)이었다. 다. 형태문(形態問) 각(各) amino 산(酸)의 함량(含量)을 비교(比較)할 때 전체적(全體的)으로 glycine, aspartic acid, alanine 이 많았고 tyrosine, methionine은 적었고 arginine은 거의 측정되지 않았다.

  • PDF

화전토양(火田土壤)의 부식(腐植)에 관(關)한 연구(硏究) (Studies on the humus soil reclaimed by farming for cultivation)

  • 곽판주
    • Applied Biological Chemistry
    • /
    • 제9권
    • /
    • pp.153-159
    • /
    • 1968
  • 강원도(江原道) 춘성군(春城郡) 동산면(東山面) 원창이리(元倉二里) 면내리(面內里)의 화전토양수점(火田土壤數點)을 공시(供試)하여 토양(土壤)의 일반적(一般的) 성질(性質)과 홍법(弘法), 대우(大羽)에 의한 Simon의 수정법(修正法)으로 부식(腐植)의 형태(形態)를 분석검토(分析檢討)하였든바 그 결과(結果)를 요약(要約)하면 다음과 같다. 1) 본화전토양(本火田土壤)은 일반화학성분(一般化學成分)이 보통(普通) 토양(土壤)과 근사(近似)하나 C.E.C.는 크며 유기물(有機物)이 특(特)히 많이 함유(含有)되어 있다. 2) 추출제(抽出劑)에 따른 추출부식(抽出腐植)은 NaOH의 Na-pyrophosphate, NaF.의 순(順)이며 토층(土層)에 따른 추출량(抽出量)은 상층(上層)일수록 많으며 PQ% 역시(亦是) 상층(上層)일수록 크다. 3) 부식화도(腐植化度)는 NaOH. Na-pyrophosphate 추출부식(抽出腐植)은 근사(近似)하나 NaF 추출부식(抽出腐植)은 낮다. 층위별(層位別)로 보면 하층(下層)일수록 높으며 토양(土壤)의 부식화도(腐植化度)의 순위(順位)는 약간 B 토양(土壤)이 높은것 같다. 4) $Mg^{++}$에 의하여 부식산(腐植酸)을 ${\alpha}$ 형(形), ${\beta}$ 형(形)으로 분할(分割)하였으며 NaOH 추출부식산(抽出腐植酸)의 ${\alpha}$ 형(形), ${\beta}$ 형(形) 부식산(腐植酸)이 부식화도(腐植化度)가 높으며 Na-pyrophosphate 추출부식산(抽出腐植酸)의 부식화도(腐植化度)는 낮다. 경작기간(耕作期間)에 따른 부식화도(腐植化度)의 변화(變化)는 별(別)로 찾아 볼 수 없다. 5) ${\alpha}$, ${\beta}$ 형(形) 부식산(腐植酸)의 흡광곡선(吸光曲線)을 보면 추출제(抽出劑)에 따른 변화(變化)는 없고 동일(同一)한 곡선(曲線)이 나타났다.

  • PDF

RESEARCH PAPERS : CHARACTERIZATION OF DISSOLVED ORGANIC MATTER IN A SHALLOW EUTROPHIC LAKE AND INFLOWING WATERS

  • 김용환;이선화
    • Environmental Engineering Research
    • /
    • 제7권2호
    • /
    • pp.93-101
    • /
    • 2002
  • The seasonal patterns of dissolved organic matter (DOM) in Lake Kasumigaura, a shallow, eutrophic lake, and serveral DOM sources in its catchment area were investigated. DOM was fractionated using three resin adsorbents into classes: aquatic humic substances (AHS=humic acid+fulvic acid), hydrophobic neutrals (HoN), hydrophilic acids (HiA), bases (BaS) and hydrophilic neutrals (HiN). The DOM produced significantly different fraction distributions depending on the origin of sample. AHS and HiA prevailed over AHS in the lake while AHS and HiA existed at almost the same concentration levels in the rivers. AHS seems to be a more dominant component in rever water than lake water. The dominance of organic acids was also observed in the DOM sources: forest stream (FS), plowed field percolate (PFP), domestic sewage (DS) and sewage treatment plant effluent (STPE).

土炭흄酸의 性狀및 應用에 關한 硏究 흄酸(니트로흄酸鹽)의 應用 (第3報) (Studies on the Characteristics of Humic Acid and its Utilizations. (Ⅲ) Utilizations of Humic Acid (Nitrohumates))

  • 김원택
    • 대한화학회지
    • /
    • 제13권1호
    • /
    • pp.62-67
    • /
    • 1969
  • The adaptabilities of various nitrohumates (-K, -Na and $-NH_4$ salt) as a soil conditioner and a raw material for soluble phosphatic fertilizer were studied. 1. Nitrohumates (especially $-NH_4$ salt) protect the soil from fissures and control the phosphoric acid adsorptive functions of soils considerably. 2. Most effective nitrohumic acids as a soil conditioner were prepared with 15% $HNO_3$ solution composed of five times of original humic acids (by weight) at $80^{\circ}C$ for 2 hrs under continuous stirring. 3. When 50% (by weight) of $NH_4$-nitrohumate were added to apatites in water and boiled for 2 hrs, maximum 26% of $P_2O_5$(apatite contains 37% of $P_2O_5$) were changed into water soluble forms.

  • PDF

막오염 지수를 이용한 유기물에 의한 막오염 평가 (Evaluation of Organic Fouling Potential by Membrane Fouling Index)

  • 김하나;박찬혁;홍승관
    • 한국물환경학회지
    • /
    • 제22권1호
    • /
    • pp.140-144
    • /
    • 2006
  • This study was performed to investigate the effect of organic characteristics and feed water solution chemistry on membrane fouling index such as Silt Density Index (SDI) and Modified Fouling Index (MFI). Specifically, Aldrich humic acids (AHA) and Suwannee river humic acids (SHA) were used in SDI/MFI experiments. Higher SDI values were observed with increasing organic concentration. AHA with larger molecular weight (MW) and SUVA (${\approx}UV_{254}/TOC$) resulted in higher SDI values, compared to SHA. The feed solution chemistry (i.e, pH, ionic strength, and hardness) also affects SDI values to some degree. In particular, SDI increased with increasing hardness ($Ca^{2+}$) concentration for AHA. Unlike SDI, the MFI developed on the basis of particle cake filtration theory, was not accurately assessed due to internal fouling by organics such as pore adsorption and subsequent pore blocking.

토양(土壤) 부식물(腐植物)의 생성(生成)과 효과(効果)에 대(對)한 고찰(考察) (On the Forming Processes of Soil Humic Substances and its Physiological Effects on Plants)

  • 임선욱
    • 한국토양비료학회지
    • /
    • 제6권1호
    • /
    • pp.67-73
    • /
    • 1973
  • Soil humic substances are defined as a humified part of the soil organic matters and regarded to play beneficial roles for colloid chemical properties and the fertility of the soils. This paper is referred to review the present trend of the studies on the forming processes of humic substances and on the effect on plant metabolism by some organic compounds that are directly absorbed by plants. It is generally considered that the humic substances are formed organic matters in soil or plant materials through numerous organic or biochemical processes. However, the nature of the constituting "core" and of attachment of carbohydrate, nitrogen containing compounds like protein, phenolic compounds and metals to the core are unclear though various models are suggested. It is reviewed that some organic compounds, phenclic acids, derived from humic substances are effective on plant metablism in many cases, although the mechanisms are remained to be clarified.

  • PDF

EFFECTS OF H2O2, TURBIDITY AND METALS ON SONOCHEMICAL DECOMPOSITION OF HUMIC SUBSTANCES IN WASTEWATER EFFLUENT

  • Kim, Il-Kyu
    • 한국물환경학회지
    • /
    • 제18권3호
    • /
    • pp.271-282
    • /
    • 2002
  • The sonochemical process has been applied as a treatment method to investigate its effect on the decomposition of humic substances (HS). The reaction kinetics and mechanisms in the process of sonochemical treatment for humic substances in wastewater have also been discussed. It was observed that the metal ions such Fe(II) and Mn(II) showed catalytic effects, while Al(III), Ca(II), and Mg(II) had inhibitory effects on the decomposition of humic substances in sonochemical reaction with hydrogen peroxide. Experimental results also showed factors such as hydrogen peroxide dose affected the formation of disinfection by-products. Two trihalomethanes, chloroform and dichlorobromomethane were formed as major disinfection by-products during chlorination. The depolymerization and the radical reaction of HS radicals appear to occur simultaneously. The final step of the reaction is the conversion of organic acids to carbon dioxide.

Effect of $H_2O_2$ and Metals on The Sonochemical Decomposition of Humic Substances in Wastewater Effluent

  • Jung, Oh-Jun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제10권S_3호
    • /
    • pp.127-137
    • /
    • 2001
  • The sonochemical Process has been applied as a treatment method and was investigated its effect on the decomposition of humic substances(HS). The reaction kinetics and mechanisms in the Process of sonochemical treatment for humic substances(HS) in wastewater have also been discussed. It was observed that the metal ions such as Fe(II) and Mn(II) showed catalytic effects, while Al(III), Ca(II), and Mg(II) had inhibitory effects on the decomposition of humic substances in sonochemical reaction with hydrogen peroxide. Experimental results also showed factors such as hydrogen peroxide dose affected the formation of disinfection by-products. Two trihalomethanes, chloroform and dichlorobromomethane were formed as major disinfection by-products during chlorination. The mechanism of radical reaction is controlled by an oxidation process. The radicals are so reactive that most of them are consumed by HS radicals and hydroxyl radicals can be acted on organic solutes by hydroxyl addition, hydrogen abstraction, and electron transfer. The depolymerization and the radical reaction of HS radicals appear to occur simultaneously. The final steps of the reaction are the conversion of organic acids to carbon dioxide.

  • PDF