• 제목/요약/키워드: humanoid robot system

Search Result 125, Processing Time 0.027 seconds

Center of Mass Compliance Control of Humanoid Using Disturbance Observer (외란 관측기를 이용한 휴머노이드 무게 중심 유연 동작 제어)

  • Park, Gyeongjae;Kim, Myeong-Ju;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.339-346
    • /
    • 2022
  • To operate in real environment, humanoid robots should be able to react to unknown disturbances. To deal with disturbances, various robust control algorithms have been developed for decades. But for collaborative works such as teleoperation system, a compliance control can be the better solution for disturbance reactions. In this paper, a center of mass (CoM) compliance control algorithm for humanoid robots is proposed. The proposed algorithm is based on the state observer and positive feedback of disturbance. With the state observer based on humanoid CoM control performance model, disturbance in each direction can be observed. The positive feedback of disturbances to the reference CoM trajectory enables compliant motion. The main contributions of this algorithm are achieving compliance independently in each axis and maintaining balance against external force. Through dynamic simulations, the performance of the proposed method was demonstrated. Under two types of disturbance conditions, humanoid robot DYROS-JET reacted with compliant motion via the proposed algorithm.

Development of Biped Walking Robot and Its Swing Motion (이족 보형로봇 개발과 그네 운동)

  • Park, Seong-Hoon;Kim, Jee-Hong;Yi, Soo-Yeong;Chong, Kil-To;Sung, Young-Whee
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2411-2413
    • /
    • 2003
  • A new small humanoid robot system is developed in this paper. The humanoid robot has total 20 DOFs : 6 DOFs in each legs, 3 DOFs in each arms, and 2 DOFs in head, 34cms in height, and 2kgs in weight. The robot has the following characteristics: (1) PDA as host controller (2) network-based joint controller (3) wireless camera attached in robot's head (4) mechanism design by CATIA and high speed laser prototyping (5) graphic MMI(Man-Machine Interface) utilizing the CATIA data. By using ADXL inclination sensor, we implement the rope swing with the robot leg motion as well as walking.

  • PDF

Intelligent Distance Controller for Humanoid Robot Arms Handling a Common Object (휴머노이드 로롯팔의 물체 조작을 위한 지능형 거리 제어기)

  • Bhogadi, Dileep K.;Cho, Hyun-Chan;Kim, Kwang-Sun;Wilson, Sara
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.71-74
    • /
    • 2008
  • The main object of this paper is concentrated on distance control of two robot arms of a humanoid using Fuzzy Logic Controller (FLC) for handling a common object. Serial Link Robot arms are widely used in most significantly in Humanoids serving for older people and also in various industrial applications. A method is proposed here that separates the interconnections between two robot arms so that the resulting model of two arms is decomposed into fuzzy logic based controller. The distance between two end effectors is always kept equal to that of the diameter of an object to be handled, so that the object would not fall down. Mathematical model of this system was obtained to simulate the behavior of serial robotic arms in close loop control before using fuzzy logic controller. Lagrangian equation of motion has been used to obtain the appropriate mathematical model of Robotic arms. The results are shown to provide some improvement over those obtained by more conventional means.

  • PDF

Design and Hardware Integration of Humanoid Robot Platform KHR-2 (인간형 로봇 플랫폼 KHR-2 의 설계 및 하드웨어 집성)

  • Kim, Jung-Yup;Park, Ill-Woo;Oh, Jun-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.579-584
    • /
    • 2004
  • In this paper, we present the mechanical, electrical system design and system integration of controllers including sensory devices of the humanoid, KHR-2 (KAIST Humanoid Robot - 2). We have developed KHR-2 since 2003. Total number of DOF of KHR-2 is 41. Each arm including a hand has 11 DOF and each leg has 6 DOF. Head and trunk also has 6 DOF and 1 DOF respectively. In head, two CCD cameras are used for eye. To control all axes efficiently, distributed control architecture is used to reduce computation burden of main controller and to expand devices easily. So we developed the sub-controller as a servo motor controller and a sensor interfacing devices using microprocessor. The main controller attached its back communicates with sub-controllers in real-time by CAN (Controller Area Network) protocol. We used Windows XP as its OS (Operation System) for fast development of main control program and easy extension of peripheral devices. And RTX HAL extension commercial software is used to realize the real-time control in Windows XP environment.

  • PDF

Removal of Debris Blocking an Entryway: Inverse Kinematic Control and Balancing Controller Design for Humanoid (휴머노이드 로봇의 입구 통로를 막고 있는 잔해 제거를 위한 역 기구학 제어와 자세 제어기 설계)

  • Lee, In-Ho;Kim, Inhyeok;Oh, Jun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1063-1066
    • /
    • 2014
  • The humanoid robot, DRC-HUBO is developed from the KHR (KAIST Humanoid Robot) series to meet the requirements of the DARPA Robotics Challenge. DARPA Robotics Challenge was a competition to develop semi-autonomous humanoid robot so that dispatched in dangerous environments in place of humans like the Fukushima nuclear accident. In this paper, we introduce DRCH-UBO briefly and a methodology to remove debris blocking an entryway. The methodology includes inverse kinematics for DRC-HUBO and stabilization controller based on ZMP. Proposed inverse kinematics is robust, and pelvis-related tasks improve the manipulability and workspace of the arms. The controller improves the damping characteristic of the system and mitigates the instability during removal of debris. For given position and orientation of the debris, DRC-HUBO generates motion to reach the debris and lift up while stabilizing itself. Many experimental results verify our proposed methodology.

Implementation of Multiple Nonlinearities Control for Stable Walking of a Humanoid Robot (휴머노이드 로봇의 안정적 보행을 위한 다중 비선형 제어기 구현)

  • Kong, Jung-Shik;Kim, Jin-Geol;Lee, Bo-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.215-221
    • /
    • 2006
  • This paper is concerned with the control of multiple nonlinearities included in a humanoid robot system. A humanoid robot has some problems such as the structural instability, which leads to consider the control of multiple nonlinearities caused by driver parts as well as gear reducer. Saturation and backlash are typical examples of nonlinearities in the system. The conventional algorithms of backlash control were fuzzy algorithm, disturbance observer and neural network, etc. However, it is not easy to control the system by employing only single algorithm since the system usually includes multiple nonlinearities. In this paper, a switching Pill is considered for a control of saturation and a dual feedback algorithm is proposed for a backlash control. To implement the above algorithms, the system identification is firstly performed for the minimization of the difference between the results of simulation and experiment, and then the switching Pill gains are determined using genetic algorithm with some heuristic approach. The performance of the switching Pill controller for saturation and the dual feedback for backlash control is investigated through the simulation. Finally, it is shown that the implemented control system has good results and can be applied to the real humanoid robot system ISHURO.

Development of robotic hands of signbot, advanced Malaysian sign-language performing robot

  • Al-Khulaidi, Rami Ali;Akmeliawati, Rini;Azlan, Norsinnira Zainul;Bakr, Nuril Hana Abu;Fauzi, Norfatehah M.
    • Advances in robotics research
    • /
    • v.2 no.3
    • /
    • pp.183-199
    • /
    • 2018
  • This paper presents the development of a 3D printed humanoid robotic hands of SignBot, which can perform Malaysian Sign Language (MSL). The study is considered as the first attempt to ease the means of communication between the general community and the hearing-impaired individuals in Malaysia. The signed motions performed by the developed robot in this work can be done by two hands. The designed system, unlike previously conducted work, includes a speech recognition system that can feasibly integrate with the controlling platform of the robot. Furthermore, the design of the system takes into account the grammar of the MSL which differs from that of Malay spoken language. This reduces the redundancy and makes the design more efficient and effective. The robot hands are built with detailed finger joints. Micro servo motors, controlled by Arduino Mega, are also loaded to actuate the relevant joints of selected alphabetical and numerical signs as well as phrases for emergency contexts from MSL. A database for the selected signs is developed wherein the sequential movements of the servo motor arrays are stored. The results showed that the system performed well as the selected signs can be understood by hearing-impaired individuals.

A Study on Humanoid Robot Control Method Using Zigbee Wireless Servo Motor with Sensor Network

  • Shin, Dae-Seob;Lee, Hyeong-Cheol
    • Journal of IKEEE
    • /
    • v.16 no.3
    • /
    • pp.235-243
    • /
    • 2012
  • In this study, we developed two legged multi-joint robot by using wireless servo motor that was applied by wireless sensor network technology, which is widely used recently, and performed an experiment of walking method of two legged multi-joint robot. We constructed the star network with servo motors which were used at each joint of two-legged robot. And we designed the robot for operation by transmission of joint control signal from main control system or by transmission of the status of each joint to the main control system, so it operates with continuously checking the status of joints at same time. We developed the humanoid robot by using wireless digital servo motor which is different from existing servo motor control system, and controlled it by transmitting the information of angles and speeds of robot joints to the motor(node) as a feedback through main control system after connecting power and setting up the IDs to each joint. We solved noisy problem generated from wire and wire length to connection point of the control device by construction of the wireless network instead of using existing control method of wiring, and also solved problem of poor real time response to gait motion by controlling the position with continuous transmission of control signals to each joint. And we found that the effective control of robot is able by performing the simulation on walking motion in advance with the developed control algorithm which was downloaded into installed memory. Also we performed the stable walking with two-legged robot by attaching pressure sensor to robot sole. And we examined the robot gait operated by application of calculated algorithm on robot movement to each joint. In this study, we studied the method of controlling robot gait motion by using wireless servo motors and measured the torque applied to each joint, and found that the developed wireless servo motor by ZigBee sensor network offers easier control of two legged robot gait and better circuit configuration of it than the existing wired control system could do.

Realization of Sensory-Based Biped Walking

  • Lim, Hum-Ok;Yu, Ogura;Takanishi, Atsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.197-202
    • /
    • 2003
  • This paper describes realtime walking based on sensory information. In this study, a biped robot having a trunk is considered. The motion of the trunk balances the whole body of the biped robot while the legs locomotes on the ground. How to calculate the motion of the trunk is proposed using the ZMP concept. Also, an online walking pattern is discussed which is generated in realtime on the basis of walking parameters selected by visual and auditory sensors. In order to realize biped walking, we have constructed a forty-three degrees of freedom biped robot, WABIAN-RV (WAseda BIped humANoid robot-Revised V). Its height is 1.89[m] and its total weight is 131.4[kg]. Various walking experiments using WABIAN-RV are conducted on the plane, and the validity of its mechanism and control is verified.

  • PDF