• 제목/요약/키워드: humanoid robot system

Search Result 125, Processing Time 0.031 seconds

A Study on Humanoid Robot Hand System and Real-Time Grasp Motion Control (인간형 로봇 손 시스템과 실시간 파지 동작 제어에 관한 연구)

  • 임미섭;오상록;손재범;이병주;유범재;홍예선
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.404-414
    • /
    • 2000
  • This paper addresses the development of a 3-fingered humanoid robot hand system and a real-time grasp synthesis of multifingered robot hands to find grasp configurations which satisfy the force closure condition of arbitrary shaped objects. We propose a fast and efficient grasp synthesis algorithm for planar polygonal objects, which yields the contact locations on a given polygonal object to obtain a force closure grasp by the multifingered robot hand. For an optimum grasp and real-time computation, we develop the preference and the hibernation process and assign physical constraints of the humanoid hand to the motion of each finger. The preferences consist of each sublayer reflecting the primitive preference similar to the conditional behaviors of humans for given objectives and their arrangements are adjusted by the heuristics inspired from human's grasping behaviors. The proposed method reduces the computational time significantly at the sacrifice of global optimality, and enables the grasp posture to be changable within two-finger and three-finger grasps. The performance of the presented algorithm is evaluated via simulation studies to obtain the force-closure grasps of polygonal objects with fingertip grasps. The architecture suggested is verified through experimental implementation to our robot hand system by solving the 2- or 3-finger grasp synthesis.

  • PDF

Development of Humanoid Joint Module for Safe Human-Robot Interaction (인간과의 안전한 상호 작용을 고려한 휴머노이드 조인트 모듈 개발)

  • Oh, Yeon Taek
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.264-271
    • /
    • 2014
  • In this study, we have developed the humanoid joint modules which provide a variety of service while living with people in the future home life. The most important requirement is ensuring the safety for humans of the robot system for collaboration with people and providing physical service in dynamic changing environment. Therefore we should construct the mechanism and control system that each joint of the robot should response sensitively and rapidly to fulfill that. In this study, we have analyzed the characteristic of the joint which based on the target constituting the humanoid motion, developed the optimal actuator system which can be controlled based on each joint characteristic, and developed the control system which can control an multi-joint system at a high speed. In particular, in the design of the joint, we have defined back-drivability at the safety perspective and developed an actuator unit to maximize. Therefore we establish a foundation element technology for future commercialization of intelligent service robots.

Dynamic Analysis of a Humanoid Robot Using F.E.M Analysis Program (F.E.M 해석 프로그램을 이용한 휴머노이드 로봇의 동역학 해석)

  • Cho, Hyoung-Rae;Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.591-593
    • /
    • 2005
  • This paper presents the dynamic analysis of a humanoid robot using Nastran that is one of FEM analysis program. Generally, computer program based on the Lagrange-Euler method or Newton-Euler method was used for dynamic analysis of a robot. The Lagrange-Euler method requires much calculation performance and it is also hard to apply to complex structure, and the Newton-Euler method limits accurate modeling and calculation for closed structure like a humanoid robot. In this paper, mechanical and structural data are obtained from the Nastran. It is possible for Nastran to make model similar to real system and can apply a physical properties and laws to model. So, accurate simulation is possible. From this result, accurate data is gained by Nastran. Furthermore, this method is shown to be a useful method that guarantees accuracy for trajectory planning.

  • PDF

Design and Realization of a Small Humanoid Robot (소형 휴머노이드(SERO-VI) 로봇 설계 및 구현)

  • Lee, Bo-Hee;Jun, Jae-Min;Kim, Ki-Woo;Park, Sung-Chul;Oh, Jun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.255-257
    • /
    • 2005
  • This paper deals with the design and the realization of a small humanoid robot, which is called SERO_VI. The design concept and the mechanical structure including kinematics for the robot are presented. The humanoid robot consisted of 25 DOF with legs 12 DOF, arms 8 DOF, waists 3 DOF and heads 2 DOF for the purpose of vision system. The controller structure was also suggested such as modular joint actuators, DSP interface and their communication method. Simple experiment was done and its validness was investigated in order to verify the kinematic result.

  • PDF

A Study on The Implementation of Stable and High-speed Humanoid Robot (ICCAS 2004)

  • Kim, Seung-Woo;Jung, Yong-Rae;Jang, Kyung-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1440-1443
    • /
    • 2004
  • Most previous robots had used the wheels as means for movement. These structures were relatively simple and easy to control and this is why the method had been used until currently. However, there are many realistic problems to move from one place to another in human life, for instance, steps and edges. So we need to develop the two-legged walking humanoid robot. The 2-legged walking Robot system has been vigorously developed in so many corporations and academic circles of several countries. However, 2-legged walking Robot has been mostly studied in view of the static walk. We design a stable humanoid Robot which can walk in high-speed through the research of the dynamic walk in this paper. Especially, worldwide companies have been interested in developing humanoid robots for a long time to solve the before mentioned problems so that they can become more familiar with the human form. The most important thing, for the novel two-legged walk, is to create a stable and fast walking in two-legged robots. For realization of this movement, an optimal mechanical design of 12 DOFS, a distributed control and a parallel processing control are implemented in this paper. This paper proves that high speed and stable walking can be achieved, through experiments.

  • PDF

Design and Walking Control of the Humanoid Robot, KHR-2(KAIST Humanoid Robot-2)

  • Kim, Jung-Yup;Park, Ill-Woo;Oh, Jun-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1539-1543
    • /
    • 2004
  • This paper describes platform overview, system integration and dynamic walking control of the humanoid robot, KHR-2 (KAIST Humanoid Robot - 2). We have developed KHR-2 since 2003. KHR-2 has totally 41 DOF (Degree Of Freedom). Each arm including a hand has 11 DOF and each leg has 6 DOF. Head and trunk also has 6 DOF and 1 DOF respectively. In head, two CCD cameras are used for eye. In order to control all joints, distributed control architecture is adopted to reduce the computation burden of the main controller and to expand the devices easily. The main controller attached its back communicates with sub-controllers in real-time by using CAN (Controller Area Network) protocol. We used Windows XP as its OS (Operating System) for fast development of main control program and easy extension of peripheral devices. And RTX, HAL(Hardware Abstraction Layer) extension program, is used to realize the real-time control in Windows XP environment. We present about real-time control of KHR-2 in Windows XP with RTX and basic walking control algorithm. Details of the KHR-2 are described in this paper.

  • PDF

Self-Learning Control of Cooperative Motion for Humanoid Robots

  • Hwang, Yoon-Kwon;Choi, Kook-Jin;Hong, Dae-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.725-735
    • /
    • 2006
  • This paper deals with the problem of self-learning cooperative motion control for the pushing task of a humanoid robot in the sagittal plane. A model with 27 linked rigid bodies is developed to simulate the system dynamics. A simple genetic algorithm(SGA) is used to find the cooperative motion, which is to minimize the total energy consumption for the entire humanoid robot body. And the multi-layer neural network based on backpropagation(BP) is also constructed and applied to generalize parameters, which are obtained from the optimization procedure by SGA, in order to control the system.

Humanoid Robot Performance System for Performing in Public Places (공공장소에서 공연을 위한 휴머노이드 로봇 공연 시스템)

  • Hwang, Heesoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.190-196
    • /
    • 2016
  • This paper proposes a humanoid robot performance system for performing in public places, such as an event, exhibition, or street performance. The system of modular structures can be moved easily, and can be played by a module or a combination of modules. The system developed with open source-based software and hardware is easy to adapt and improve. The robot performance control program for controlling robots, displays, audios, videos, and performance instruments was developed using the open source language, Processing. The performance instruments were developed using the open source hardware, Arduino. The contents of the robot performance were composed of scene-specific image, background audio, computer graphics, and videos. For their control and synchronization, the performance control program communicates with the humanoid robots and the performance instruments. In addition, performance accessories required to represent the performance concepts are produced by 3D modeling and printing. In a public place, the robot performance is performed with the theme of celebrating a Halloween day.

Development of 3-Dimensional Pose Estimation Algorithm using Inertial Sensors for Humanoid Robot (관성 센서를 이용한 휴머노이드 로봇용 3축 자세 추정 알고리듬 개발)

  • Lee, Ah-Lam;Kim, Jung-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.133-140
    • /
    • 2008
  • In this paper, a small and effective attitude estimation system for a humanoid robot was developed. Four small inertial sensors were packed and used for inertial measurements(3D accelerometer and three 1D gyroscopes.) An effective 3D pose estimation algorithm for low cost DSP using an extended Kalman filter was developed and evaluated. The 3D pose estimation algorithm has a very simple structure composed by 3 modules of a linear acceleration estimator, an external acceleration detector and an pseudo-accelerometer output estimator. The algorithm also has an effective switching structure based on probability and simple feedback loop for the extended Kalman filter. A special test equipment using linear motor for the testing of the 3D pose sensor was developed and the experimental results showed its very fast convergence to real values and effective responses. Popular DSP of TMS320F2812 was used to calculate robot's 3D attitude and translated acceleration, and the whole system were packed in a small size for humanoids robots. The output of the 3D sensors(pitch, roll, 3D linear acceleration, and 3D angular rate) can be transmitted to a humanoid robot at 200Hz frequency.