• Title/Summary/Keyword: humanoid robot system

Search Result 125, Processing Time 0.017 seconds

A Tracking Algorithm to Certain People Using Recognition of Face and Cloth Color and Motion Analysis with Moving Energy in CCTV (폐쇄회로 카메라에서 운동에너지를 이용한 모션인식과 의상색상 및 얼굴인식을 통한 특정인 추적 알고리즘)

  • Lee, In-Jung
    • The KIPS Transactions:PartB
    • /
    • v.15B no.3
    • /
    • pp.197-204
    • /
    • 2008
  • It is well known that the tracking a certain person is a vary needed technic in the humanoid robot. In robot technic, we should consider three aspects that is cloth color matching, face recognition and motion analysis. Because a robot technic use some sensors, it is many different with the robot technic to track a certain person through the CCTV images. A system speed should be fast in CCTV images, hence we must have small calculation numbers. We need the statistical variable for color matching and we adapt the eigen-face for face recognition to speed up the system. In this situation, motion analysis have to added for the propose of the efficient detecting system. But, in many motion analysis systems, the speed and the recognition rate is low because the system operates on the all image area. In this paper, we use the moving energy only on the face area which is searched when the face recognition is processed, since the moving energy has low calculation numbers. When the proposed algorithm has been compared with Girondel, V. et al's method for experiment, we obtained same recognition rate as Girondel, V., the speed of the proposed algorithm was the more faster. When the LDA has been used, the speed was same and the recognition rate was better than Girondel, V.'s method, consequently the proposed algorithm is more efficient for tracking a certain person.

Kinematic of 7 D.O.F. Exoskeleton-Type Master Arm Estimating Human Arm's Motion (사람팔의 운동을 추정하는 7자유도 골격형 마스터암의 기구학 연구)

  • Sin, Wan-Jae;Park, Jong-Hyun;Park, Jahng-Hyeon;Park, Jong-Oh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.796-802
    • /
    • 2000
  • A master-slave system for teleoperation is usually used to control the robor's motion on remote place such as abyss, outer space etc.. When the slave robot is a humanoid one, it can make a better performance if the configuration of the master arm is similar to that of the slave arm and of the human. The master arm proposed in this paper has a type to be put on the human arm, that is, the exoskeleton type, and has a combination of serial joint and parallel mechanism imitating the human's arm structure of muscles and bones, so called hybrid mechanism so that it can follow arm's movement effectively. But it is easy to solve the forward kinematis of the parallel structure because relating equations are implicit functions. In order to solve that, the virtual joint angle corresponding to human arm's joint is introduced and a sequential computation step is employed in calculating virtual joint angles and the posture of the end effector. Also validity is checked up through computational simulation.

  • PDF

Stability Analysis of Multi-motor Controller based on Hierarchical Network (계층적 네트워크 기반 다중 모터 제어기의 안정도 분석)

  • Chanwoo Moon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.677-682
    • /
    • 2023
  • A large number of motors and sensors are used to drive a humanoid robot. In order to solve the wiring problem that occurs when connecting multiple actuators, a controller based on a communication network has been used, and CAN, which is advantageous in terms of cost and a highly reliable communication protocol, was mainly used. In terms of the structure of the controller, a torque control type structure that is easy to implement an advanced algorithm into the upper controller is preferred. In this case, the low communication bandwidth of CAN becomes a problem, and in order to obtain sufficient communication bandwidth, a communication network is configured by separating into a plurality of CAN networks. In this study, a stability analysis on transmission time delay is performed for a multi-motor control system in which high-speed FlexRay and low-speed CAN communication networks are hierarchically connected in order to obtain a high communication bandwidth, and sensor information and driving signals are delivered within the allowed transmission time. The proposed hierarchical network-based control system is expected to improve control performance because it can implement multiple motor control systems with a single network.

Robust Real-time Pose Estimation to Dynamic Environments for Modeling Mirror Neuron System (거울 신경 체계 모델링을 위한 동적 환경에 강인한 실시간 자세추정)

  • Jun-Ho Choi;Seung-Min Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.583-588
    • /
    • 2024
  • With the emergence of Brain-Computer Interface (BCI) technology, analyzing mirror neurons has become more feasible. However, evaluating the accuracy of BCI systems that rely on human thoughts poses challenges due to their qualitative nature. To harness the potential of BCI, we propose a new approach to measure accuracy based on the characteristics of mirror neurons in the human brain that are influenced by speech speed, depending on the ultimate goal of movement. In Chapter 2 of this paper, we introduce mirror neurons and provide an explanation of human posture estimation for mirror neurons. In Chapter 3, we present a powerful pose estimation method suitable for real-time dynamic environments using the technique of human posture estimation. Furthermore, we propose a method to analyze the accuracy of BCI using this robotic environment.

Development and Application of Polymer-based Flexible Force Sensor Array (폴리머 재료를 이용한 유연 수직/수평 힘 센서 어레이 개발 및 응용)

  • Hwang, Eun-Soo;Yoon, Young-Ro;Yoon, Hyoung-Ro;Shin, Tae-Min;Kim, Yong-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.142-149
    • /
    • 2009
  • This paper proposes and demonstrates novel flexible contact force sensing devices for 3-dimensional force measurement. To realize the sensor, polyimide and polydimethylsiloxane are used as a substrate, which makes it flexible. Thin-film metal strain gauges, which are incorporated into the polymer, are used for measuring the three-dimensional contact forces. The force sensor characteristics are evaluated against normal and shear load. The fabricated force sensor can measure normal loads up to 4N. The sensor output signals are saturated against load over 4N. Shear loads can be detected by different voltage drops in strain gauges. The device has no fragile structures; therefore, it can be used as a ground reaction force sensor for balance control in humanoid robots. Four force sensors are assembled and placed in the four corners of the robot's sole. By increasing bump dimensions, the force sensor can measure load up to 20N. When loads are exerted on the sole, the ground reaction force can be measured by these four sensors. The measured forces can be used in the balance control of biped locomotion system.