• 제목/요약/키워드: humanoid robot arms

검색결과 24건 처리시간 0.028초

스테레오 비전정보를 사용한 휴머노이드 로봇 팔 ROBOKER의 동적 물체 추종제어 구현 및 실험 (Implementation and Experimentation of Tracking Control of a Moving Object for Humanoid Robot Arms ROBOKER by Stereo Vision)

  • 이운규;김동민;최호진;김정섭;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.998-1004
    • /
    • 2008
  • In this paper, a visual servoing control technique of humanoid robot arms is implemented for tracking a moving object. An embedded time-delayed controller is designed on an FPGA(Programmable field gate array) chip and implemented to control humanoid robot arms. The position of the moving object is detected by a stereo vision camera and converted to joint commands through the inverse kinematics. Then the robot arm performs visual servoing control to track a moving object in real time fashion. Experimental studies are conducted and results demonstrate the feasibility of the visual feedback control method for a moving object tracking task by the humanoid robot arms called the ROBOKER.

휴머노이드 로롯팔의 물체 조작을 위한 지능형 거리 제어기 (Intelligent Distance Controller for Humanoid Robot Arms Handling a Common Object)

  • Bhogadi, Dileep K.;Cho, Hyun-Chan;Kim, Kwang-Sun;Wilson, Sara
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.71-74
    • /
    • 2008
  • The main object of this paper is concentrated on distance control of two robot arms of a humanoid using Fuzzy Logic Controller (FLC) for handling a common object. Serial Link Robot arms are widely used in most significantly in Humanoids serving for older people and also in various industrial applications. A method is proposed here that separates the interconnections between two robot arms so that the resulting model of two arms is decomposed into fuzzy logic based controller. The distance between two end effectors is always kept equal to that of the diameter of an object to be handled, so that the object would not fall down. Mathematical model of this system was obtained to simulate the behavior of serial robotic arms in close loop control before using fuzzy logic controller. Lagrangian equation of motion has been used to obtain the appropriate mathematical model of Robotic arms. The results are shown to provide some improvement over those obtained by more conventional means.

  • PDF

소형 인간형 로봇의 골프하기 (A Small Humanoid Robot that can Play Golf)

  • 김종우;차철;조동권;성영휘
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.374-382
    • /
    • 2007
  • Robot mobility and intelligence become more important for robots to be used in various fields other than automation. The main purpose of providing mobility to a robot is to extend the robot's manipulability. In this paper, we introduce a small humanoid robot that can autonomously play golf as an example of incorporating robot intelligence, mobility, and manipulability. The robot has 12 degrees of freedom for legs and has various basic walking patterns. It can move to a desired position and change orientation by combining the basic waking patterns. The robot has a color CCD camera and can extract coordinates of the objects in the environments. The small humanoid robot has 8 degrees of freedom for arms and can play golf autonomously with two kinds of dexterous swing motions. Kinematic analysis of the robot arms, vision data processing for the recognition of the environments, algorithm for playing robotic golf have been performed or proposed. The experimental results show that the robot can play golf autonomously.

다관절 휴머노이드 상체 로봇의 제어를 위한 신경망 보상 퍼지 제어기 구현 및 실험 (Experimental Studies of a Fuzzy Controller Compensated by Neural Network for Humanoid Robot Arms)

  • 송덕희;노진석;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제13권7호
    • /
    • pp.671-676
    • /
    • 2007
  • In this paper, a novel neuro-fuzzy controller is presented. The generic fuzzy controller is compensated by a neural network controller so that an overall control structure forms a neuro-fuzzy controller. The proposed neuro-fuzzy controller solves the difficulty of selecting optimal fuzzy rules by providing the similar effect of modifying fuzzy rules simply by changing crisp input values. The performance of the proposed controller is tested by controlling humanoid robot arms. The humanoid robot arm is analyzed and implemented. Experimental studies have shown that the performance of the proposed controller is better than that of a PID controller and of a generic fuzzy PD controller.

ROBOKER 팔의 제어를 위한 FPGA 기반 비선형 제어기의 임베디드 하드웨어 구현 (Embedded Hardware Implementation of an FPGA Based Nonlinear PID Controller for the ROBOKER Arm)

  • 김정섭;전효원;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제13권12호
    • /
    • pp.1153-1159
    • /
    • 2007
  • This paper presents the hardware implementation of nonlinear PID controllers for the ROBOKER humanoid robot arms. To design the nonlinear PID controller on an FPGA chip, nonlinear functions as well as the conventional PID control algorithm have to be implemented by the hardware description language. Therefore, nonlinear functions such as trigonometric or exponential functions are designed on an FPGA chip. Simulation studies of the position control of humanoid arms are conducted and results are compared. Superior performances by the nonlinear PID controllers are confirmed when disturbances are present. Experiments of humanoid robot arm control tasks are conducted to confirm the performance of our hardware design and the simulation results.

감성 상호작용을 갖는 교육용 휴머노이드 로봇 D2 개발 (Design and implement of the Educational Humanoid Robot D2 for Emotional Interaction System)

  • 김도우;정기철;박원성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1777-1778
    • /
    • 2007
  • In this paper, We design and implement a humanoid robot, With Educational purpose, which can collaborate and communicate with human. We present an affective human-robot communication system for a humanoid robot, D2, which we designed to communicate with a human through dialogue. D2 communicates with humans by understanding and expressing emotion using facial expressions, voice, gestures and posture. Interaction between a human and a robot is made possible through our affective communication framework. The framework enables a robot to catch the emotional status of the user and to respond appropriately. As a result, the robot can engage in a natural dialogue with a human. According to the aim to be interacted with a human for voice, gestures and posture, the developed Educational humanoid robot consists of upper body, two arms, wheeled mobile platform and control hardware including vision and speech capability and various control boards such as motion control boards, signal processing board proceeding several types of sensors. Using the Educational humanoid robot D2, we have presented the successful demonstrations which consist of manipulation task with two arms, tracking objects using the vision system, and communication with human by the emotional interface, the synthesized speeches, and the recognition of speech commands.

  • PDF

인간 팔의 형태학적.신경학적 분석 기법에 기반한 휴머노이드 로봇 팔 설계 (The Design of Humanoid Robot Arm based on the Morphological and Neurological Analysis of Human Arm)

  • 최형윤;배영철;문용선
    • 제어로봇시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.555-559
    • /
    • 2007
  • There are few representative humanoid robots including Japanese ASIMO from Honda and HUBO from KAIST. We cannot consider ASIMO and HUBO the perfect humanoid robots, however. The basic principles when developing humanoid robot is to make them to work in a similar way as human's movement of arm. In this paper, we proposed method of designing humanoid robotic arms based on the morphological.eurological analysis of human's arm tor robot's arm to work in a similar way as human's ann, and we also implemented arm movement control system to humanoids robot by using SERCOS communication.

다관절 휴머노이드 로봇 팔의 제어를 위한 시간지연 제어기의 FPGA 구현 및 실험 (FPGA Implementation and Experiment of a Time-Delayed Controller for Humanoid Robot Arm Control)

  • 이운규;전효원;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제13권7호
    • /
    • pp.649-655
    • /
    • 2007
  • In this paper, a time-delayed controller for position control of humanoid robot arms is designed and implemented on a field programmable gate array(FPGA) chip. The time-delayed control algorithm is simple to implement, and robust to reject disturbances. The time-delayed control method uses the one sample time-delayed previous information to cancel out uncertainties in the system. Since the sampling time is so fast with the current hardware technology, the time-delayed controller can be implemented. However, inertia values should be correctly estimated to have the better performance. The position tracking tasks of humanoid robot arms are tested to compare performances of several control algorithms including the time-delayed controller.

Adaptation of Motion Capture Data of Human Arms to a Humanoid Robot Using Optimization

  • Kim, Chang-Hwan;Kim, Do-Ik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2126-2131
    • /
    • 2005
  • Interactions of a humanoid with a human are important, when the humanoid is requested to provide people with human-friendly services in unknown or uncertain environment. Such interactions may require more complicated and human-like behaviors from the humanoid. In this work the arm motions of a human are discussed as the early stage of human motion imitation by a humanoid. A motion capture system is used to obtain human-friendly arm motions as references. However the captured motions may not be applied directly to the humanoid, since the differences in geometric or dynamics aspects as length, mass, degrees of freedom, and kinematics and dynamics capabilities exist between the humanoid and the human. To overcome this difficulty a method to adapt captured motions to a humanoid is developed. The geometric difference in the arm length is resolved by scaling the arm length of the humanoid with a constant. Using the scaled geometry of the humanoid the imitation of actor's arm motions is achieved by solving an inverse kinematics problem formulated using optimization. The errors between the captured trajectories of actor arms and the approximated trajectories of humanoid arms are minimized. Such dynamics capabilities of the joint motors as limits of joint position, velocity and acceleration are also imposed on the optimization problem. Two motions of one hand waiving and performing a statement in sign language are imitated by a humanoid through dynamics simulation.

  • PDF

Exoskeleton 모션 캡처 장치로 다관절 로봇의 원격제어를 하기 위한 FPGA 임베디드 제어기 설계 (Design of Embedded EPGA for Controlling Humanoid Robot Arms Using Exoskeleton Motion Capture System)

  • 이운규;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.33-38
    • /
    • 2007
  • In this paper, hardware implementation of interface and control between two robots, the master and the slave robot, are designed. The master robot is the motion capturing device that captures motions of the human operator who wears it. The slave robot is the corresponding humanoid robot arms. Captured motions from the master robot are transferred to the slave robot to follow after the master. All hardware designs such as PID controllers, communications between the master robot, encoder counters, and PWM generators are embedded on a single FPGA chip. Experimental studies are conducted to demonstrate the performance of the FPGA controller design.