• Title/Summary/Keyword: human-body model

Search Result 888, Processing Time 0.026 seconds

Development of Human Body Vibration Model Including Wobbling Mass (Wobbling Mass를 고려한 인체 진동 모텔의 개발)

  • 김영은;백광현;최준희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.193-200
    • /
    • 2002
  • Simple spring-damper-mass models have been widely used to investigate whole-body vortical biodynamic response characteristics of the seated vehicle driver. Most previous models have not considered the effect of wobbling masses; i.e. heart, lungs, liver, intestine, etc. In this study, 4 -DOF seated driver model including one non-rigid mass representing wobbling visceral mass, 5-DOF model including intestine, and 10-DOF model including five lumbar vertebral masses were proposed. The model parameters were identified by a combinatorial optimization technique. simulated annealing method. The objective function was chosen as the sum of error between model response of seat-to-head transmissibility and driving point mechanical impedance and those of experimental data for subjects seated erect without backrest support. The model response showed a good agreement with the experimental response characteristics. Using a 10-DOF model, calculated resonance frequency of lumbar spine at 4Hz was matched well with experimental results of Panjabi et al.

Primitive Body Model Encoding and Selective / Asynchronous Input-Parallel State Machine for Body Gesture Recognition (바디 제스처 인식을 위한 기초적 신체 모델 인코딩과 선택적 / 비동시적 입력을 갖는 병렬 상태 기계)

  • Kim, Juchang;Park, Jeong-Woo;Kim, Woo-Hyun;Lee, Won-Hyong;Chung, Myung-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Body gesture Recognition has been one of the interested research field for Human-Robot Interaction(HRI). Most of the conventional body gesture recognition algorithms used Hidden Markov Model(HMM) for modeling gestures which have spatio-temporal variabilities. However, HMM-based algorithms have difficulties excluding meaningless gestures. Besides, it is necessary for conventional body gesture recognition algorithms to perform gesture segmentation first, then sends the extracted gesture to the HMM for gesture recognition. This separated system causes time delay between two continuing gestures to be recognized, and it makes the system inappropriate for continuous gesture recognition. To overcome these two limitations, this paper suggests primitive body model encoding, which performs spatio/temporal quantization of motions from human body model and encodes them into predefined primitive codes for each link of a body model, and Selective/Asynchronous Input-Parallel State machine(SAI-PSM) for multiple-simultaneous gesture recognition. The experimental results showed that the proposed gesture recognition system using primitive body model encoding and SAI-PSM can exclude meaningless gestures well from the continuous body model data, while performing multiple-simultaneous gesture recognition without losing recognition rates compared to the previous HMM-based work.

A Study on Impact Analysis of the Korean Anthropometric Characteristic on Shooting (한국인의 인체 특성을 고려한 사격시 충격특성 해석)

  • Lee, J.W.;Lee, Y.S.;Choi, Y.J.;Chae, J.W.;Choi, E.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.150-153
    • /
    • 2005
  • The rifle impact of human body is affected by geometry of human for rifling. The interaction of human-rifle system influence a firing accuracy. In this paper, impact analysis of human model for standing postures with two B.C. carried out. ADAMS code and LifeMOD is used in impact analysis of human model and modeling of the human body, respectively. On the shooting, human model is affected by rifle impact during the 0.001 second. Also, Because Human Natural frequency is 5-200Hz, human impact is considered during 0.2-0.005 sec. Dut to the Firng test, Performed simulation time for shooting is 0.1 second. Applied constraint condition to human-rifle system is rotating and spherical condition. Also, The resulrt of changin the position of the grip is dfferent from the each other. As the results, The human model of firing was built successfully.

  • PDF

Observation Practice Using a Human Body Model in Medical Terminology Class (의학용어 수업에서 인체 모형을 이용한 관찰 실습)

  • Hyun-Woo Jeong;Hojun Yeom;Sangsoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.35-42
    • /
    • 2024
  • Biomedical engineering is a discipline that diagnoses and treats human diseases using engineering techniques based on medical and biological understanding. Proper biomedical engineering education requires education on medical terminology, human anatomy, and human physiology, but students have a preconceived notion that these basic medical subjects are subjects to be memorized. In order to eliminate these students' preconceptions, various educational methods must be developed so that students can easily access basic medical subjects. In this paper, we present a method to increase learning effectiveness by introducing observation practice of a human anatomical model to the medical terminology subject. The half-body model of the human body is a form in which various organs are assembled and can be observed by disassembling them one by one. This observation exercise consisted of questions about the organs of the head, neck, chest, and abdomen, with students working in groups to find answers. After the practice, students evaluated that this practice motivated them to learn and made it easier to understand the lecture.

Analysis of Body Pressure Distribution Characteristics According to the Design Factors of the Air-Cell Mattress for Preventing Decubitus Ulcer (욕창방지방석용 공기셀의 설계요소에 따른 체압 분포 특성 분석)

  • Cho, Hyeon-Seok;Ryu, Jei-Cheong;Kim, Gyoo-Suk;Mun, Mu-Sung;Lee, In-Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.118-126
    • /
    • 2007
  • A finite element simulation model was developed for the performance optimization of a closed type air-cell mattress used for the ulcer prevention. An H-model with material properties of human flesh and kinematic joints were used for the calculation of the body contact pressure. The material property of rubber air-cell was evaluated by tensile test of standard specimen. We evaluated the body contact pressure distribution after laying human model on the inflated air-cell mattress. It was found that the body contact pressure was dependent on cell height. but hardly affected by the thickness of the rubber in a cell.

Development of Vertical Biomechanical Model for Evaluating Ride Quality (승차감 평가를 위한 수직 방향의 인체 진동 모델 개발)

  • 조영건;박세진;윤용산
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.269-279
    • /
    • 2000
  • This paper deals with the development of biomechanical model on a seat with backrest support in the vertical direction. Four kinds of biomechanical models are discussed to depict human motion. One DOF model mainly describes z-axis motion of hip, two and three DOF models describe z-axis of hip and head, and while nine DOF model suggested in this study represents more motion than the otehr model. Three kinds of experiments were executed to validate these models. The first one was to measure the acceleration of the floor and hip surface in z-axis, the back surface in x-axis, and the head in z-axis under exciter. From this measurement, the transmissiblities of each subject were obtained. The second one was the measurement of the joint position by the device having pointer and the measurement of contact position between the human body and the seat by body pressure distribution. The third one was the measurement of the seat and back cushion by dummy. The biomechanical model parameters were obtained by matching the simulated to the experimental transmissiblities at the hip, back, and head.

  • PDF

Assesment on the Transformation of Psychological Risk Images due to Development of Flight Skills (조종 숙련도 변화에 따른 심리적 리스크 이미지의 변화에 대한 평가)

  • Kim, Yeong-Gwan;Im, Hyeon-Gyo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.57-67
    • /
    • 2003
  • The resonance behaviour needs be understood to identify the mechanisms responsible for the dynamic characteristics of human body, to allow for the non-linearity when predicting the influence of seating dynamics. and to predict the adverse effects caused by various magnitudes of vibration. However, there are currently no known studies on the effect of vibration magnitude on the transmissibility to thoracic or lumbar spine of the seated person. despite low back pain(LBP) being the most common ailment associated with whole-body vibration. The objective of this paper is to develop a proper mathematical human model for LBP and musculoskeletal injury of the crew in a maritime vehicle. In this study, 7 degree-of-freedom including 2 non-rigid mass representing wobbling visceral and intestine mass, is proposed. Also. when compared with previously published experimental results, the model response was found to be well-matching. When exposed to various of vertical vibration, the human model shows appreciable non-linearity in its biodynamic responses. The relationships of resonance for LBP and musculoskeletal injury during whole-body vibration are also explained.

Experiments to Simulate an Electric Shock Accident of a high Voltage using a Human Body Model (인체모형을 이용한 고전압(22.9[kV]) 감전사고 모의 실험)

  • Roh, Young-Su;Jang, Tae-Jun;Kwak, Hee-Ro
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.6
    • /
    • pp.63-68
    • /
    • 2006
  • Recent statistical data regarding electric shock accidents have been analyzed to examine the electric shock accidents occurred at the voltage of 22,900[V], In order to demonstrate the mechanism of the 22,900[V] electric shock accident, a number of experiments to simulate electric shock accidents have been performed based on the analysis results. In the experiment, the current flowing through a human body model was measured to quantitatively analyze the hazards of the simulated electric shock accidents in various situations. As a result of the experiment, it was shown that once an electric shock accident occurred the accident proved fatal to the human body, regardless of electric shock situation.

Study on redundancy resolution algorithm of humanoid

  • Yoo, Dong-Su;So, Byung-Rok;Choi, Jae-Yeon;Yi, Byung-Ju;Kim, Whee-Kuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2759-2764
    • /
    • 2003
  • Humans usually employ more joints than they actually need, and thus they can be categorized as a kinematically redundant system. Therefore, the behavior of the human body can be analyzed by several redundancy resolution algorithms. Different from typical industrial robots that are fixed to the ground, the COG/ZMP condition should be taken into account in the human body motion in order not to fall down. Thus a COG/ZMP stability index is employed as a measure of stability. Kinematic redundancy inherent in the human body can be exploited to satisfy the COG/ZMP condition. Simulation result shows that the COG/ZMP condition can be satisfied by exploiting the null space motion of the kinematically redundant human body model.

  • PDF

A Comparison on the Reproducibility of Parametric Bodies Used in the Virtual Garment System

  • Choi, Hee Eun;Nam, Yun Ja;Kim, Hye Suk
    • Fashion & Textile Research Journal
    • /
    • v.16 no.2
    • /
    • pp.266-274
    • /
    • 2014
  • Parametric bodies reproduce the actual shape of human body parts and should be convenient for general users to change size to judge the visual fit of clothes on-line. In this study, three parametric bodies(i.e. I, C, D ) were compared to verify the accuracy of the provided body dimensions and reproducibility to a target model. To compare reproducibility, the 20s female standard virtual model developed for an apparel industry by Korean agency for technology and standards is used. The investigation of existing parameters showed that the numbers and kinds of parameters provided by each program were different with some errors in notation; in addition, some of virtual body dimensions went beyond the maximum allowable error. The result of changing each parametric body to the 20s female standard body showed that D, C, I in order produced better reproducibility for body dimensions. There were different levels of protrusion and concavity in the virtual cross sections and virtual longitudinal sections despite the small differences in body dimensions and cross sectional areas; in addition, some parametric body was not bilateral symmetry. The results of this study can be used as basic information in the standardization of a virtual model used in a virtual garment program.