• Title/Summary/Keyword: human periodontal ligament fibroblasts

Search Result 73, Processing Time 0.025 seconds

The Effects of Pulsatilla Koreana for Anti - Inflammatory and Cellular Activity of Periodontal Tissue (백두옹 추출물의 치주조직 세포에 활성도 및 항염 효과에 관한 연구)

  • Jung, Jin-Gwang;Chung, Chin-Hyung;Lim, Sung-Bin;Kim, Jung-Keun;So, Eun-Hee
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.149-165
    • /
    • 2001
  • This study was performed to define the cytotoxicity and the anti-inflammatory action of Pulsatilla koreana extracts. To analyze cytotoxic effects, gingival and periodontal ligament fibroblasts were used, and anti-inflammatory actions related to reduction of $IL-1{\beta}$ and $PGE_2$ production were performed in vitro, for the suggestion of efficacy and safety on periodontal therapeutic use of Pulsatilla koreana extracts. We extracted ethylacetate and butylalcohol from well-dried and ground Pulsatilla koreana throughout multiple processing, then used different concentration solution(0.1 %, 0.2 %, 0.4 %, 0.01 %, 0.02 %, 0.04 %, 1 %, 2 %) of ethylacetate and butylalcohol extracts to examine eytotoxic effects and anti-inflammatory actions Cytotoxic effects were examined by ELISA reader using MTT(Methyl Thiazol-2-YL-2, 5-diphenyl Tetrazolium bromide)solution following culture of human gingival and periodontal ligament fibroblasts. Synthesis of $IL-1{\beta}$was examined by $IL-1{\beta}$ enzyme-immunoassay(EIA)system after separation and culture of monocyte, and $PGE_2$ was examined by $PGE_2EIA$ system after culture of gingival fibroblasts. The results were as follows: 1. In the MTT test of gingival fibroblasts, the change of optical density was decreased significantly at 2 % of butylalcohol extracts and 0.04 %, 0.1 %, 0.2 %, 0.4 %, 1 %, 2 % of ethylacetate extracts.(p<0.05) 2. In the MTT test of periodontal ligament cells, the change of optical density were not differ significantly. but butylalcohol and ethylacetate extracts except from butylalcohol 0.01 % showed high cell cytotoxity. 3. Both ethylacetate and butylalcohol extracts from Pulsatilla koreana inhibited the synthesis of $IL-1{\beta}$and inhibition effect of ethylacetate extracts were higher than butylalcohol extracts. 4. Both ethylacetate and butylalcohol extracts from Pulsatilla koreana inhibited the synthesis of $PGE_2$, and ethylacetate extracts were higher than butylalcohol extracts. In conclusion, ethylacetate and butylalcohol extracts from Pulsatilla koreana showed little cell cytotoxity for gingival and periodontal ligament fibroblasts, and the inhibition of $IL-1{\beta}$ and $PGE_2$ sysnthesis, therefore it is considered that these extracts can be developed as the therapeutics of the periodontal disease.

  • PDF

Biological effects of a semiconductor diode laser on human periodontal ligament fibroblasts

  • Choi, Eun-Jeong;Yim, Ju-Young;Koo, Ki-Tae;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.3
    • /
    • pp.105-110
    • /
    • 2010
  • Purpose: It has been reported that low-level semiconductor diode lasers could enhance the wound healing process. The periodontal ligament is crucial for maintaining the tooth and surrounding tissues in periodontal wound healing. While low-level semiconductor diode lasers have been used in low-level laser therapy, there have been few reports on their effects on periodontal ligament fibroblasts (PDLFs). We performed this study to investigate the biological effects of semiconductor diode lasers on human PDLFs. Methods: Human PDLFs were cultured and irradiated with a gallium-aluminum-arsenate (GaAlAs) semiconductor diode laser of which the wavelength was 810 nm. The power output was fixed at 500 mW in the continuous wave mode with various energy fluencies, which were 1.97, 3.94, and 5.91 $J/cm^2$. A culture of PDLFs without laser irradiation was regarded as a control. Then, cells were additionally incubated in 72 hours for MTS assay and an alkaline phosphatase (ALPase) activity test. At 48 hours post-laser irradiation, western blot analysis was performed to determine extracellular signal-regulated kinase (ERK) activity. ANOVA was used to assess the significance level of the differences among groups (P<0.05). Results: At all energy fluencies of laser irradiation, PDLFs proliferation gradually increased for 72 hours without any significant differences compared with the control over the entire period taken together. However, an increment of cell proliferation significantly greater than in the control occurred between 24 and 48 hours at laser irradiation settings of 1.97 and 3.94 $J/cm^2$ (P<0.05). The highest ALPase activity was found at 48 and 72 hours post-laser irradiation with 3.94 $J/cm^2$ energy fluency (P<0.05). The phosphorylated ERK level was more prominent at 3.94 $J/cm^2$ energy fluency than in the control. Conclusions: The present study demonstrated that the GaAlAs semiconductor diode laser promoted proliferation and differentiation of human PDLFs.

Effect of globular adiponectin on interleukin-6 and interleukin-8 expression in periodontal ligament and gingival fibroblasts

  • Park, Hong-Gyu;Bak, Eun-Jung;Kim, Ji-Hye;Lee, Yang-Sin;Choi, Seong-Ho;Cha, Jeong-Heon;Yoo, Yun-Jung
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.3
    • /
    • pp.149-156
    • /
    • 2011
  • Purpose: Globular adiponectin (gAd) is a type of adipocytokine, which is mainly produced by adipose tissue. It has been reported that gAd acts as a pro- as well as an anti-inflammatory factor. Interleukin (IL)-6 and IL-8 are pro-inflammatory cytokines. To investigate the role of gAd on periodontal tissues, the expression of adiponectin receptor 1 (AdipoR1) and the effect of gAd on the expression of IL-6 and IL-8 were investigated in periodontal ligament (PDL) and gingival fibroblasts. Methods: PDL and gingival fibroblasts were cultured from human periodontal tissues. gAd derived from Escherichia coli and murine myeloma cells were used. The expression of AdipoR1 was estimated by reverse transcription-polymerase chain reaction and western blot The expression of cytokines was measured by enzyme-linked immunosorbent assay. Results: PDL and gingival fibroblasts expressed both mRNA and protein of AdipoR1. gAd derived from E. coli increased the production of IL-6 and IL-8, but polymyxin B, an inhibitor of lipopolysaccharide (LPS), inhibited IL-6 and IL-8 production induced by gAd in both types of cells. gAd derived from murine myeloma cells did not induce IL-6 and IL-8 production in those cells. gAd derived from E. coli contained higher levels of LPS than gAd derived from murine myeloma cells. LPS increased production of IL-6 and IL-8 in PDL and gingival fibroblasts, but pretreatment of cells with gAd derived from murine myeloma cells did not inhibit LPS-induced IL-6 and IL-8 expression. Conclusions: Our results suggest that PDL and gingival fibroblasts express AdipoR1 and that gAd does not act as a modulator of IL-6 and IL-8 expression in PDL and gingival fibroblasts.

The Effect of Interleukin $1-{\beta}$, Platelet Derived Growth Factor-BB and Transforming Growth $Factor-{\beta}$ on the expression of PDLs17 mRNA in the Cultured Human Periodontal Ligament Fibroblasts (($IL-1{\beta}$), PDGF-BB 그리고 $TGF-{\beta}$가 사람 배양 치주인대 섬유모세포의 PDLs17 mRNA의 발현에 미치는 영향)

  • Lirn, Ki-Jung;Han, Kyung-Yoon;Kirn, Byung-Ock;Yeorn, Chang-Yeob;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.4
    • /
    • pp.787-801
    • /
    • 2001
  • The molecular mechanisms control the function of PDL(periodonta1 ligament) cells and/or fibroblasts remain unclear. PDLsl7, PDL-specific gene, had previousely identified the cDNA for a novel protein from cultured PDL fibroblasts using subtraction hybridization between gingival fibroblasts and PDL fibroblasts. The purpose of this study was to determine the regulation by growth factors and cytokines on PDLsl7 gene expression in cultured human periodontal ligament cells and observe the immunohistochemical localization of PDLsl7 protein in various tissues of mouse. Primary PDL fibroblasts isolated by scraping the root of the extracted human mandibular third molars. The cells were incubated with various concentration of human recombinant $IL-1{\beta}$, PDGF-BB and TGF\;${\beta}$ for 48h nd 2 weeks. At each time point total RNA was extracted and the levels of transcription ere assessed by reverse transcription-polymerase chain reaction (RT-PCR assay). polyclonal antiserum raised against PDLsl7 peptides, CLSVSYNRSYQINE and SEAVHETDLHDGC, were made, and stained the tooth, periodontium, developing bone, bone marrow and mid-palatal suture of the mouse. The results were as follows. 1. PDLsl7 mRNA levels were increased in response to PDGF (10ng/ml) and $TGF\;{\beta}$(20ng/ml) after treatment of the $IL-1{\beta}$, PDGF-BB and $TGF{\beta}$for 48 h. 2. PDLsl7 was up-regulated only by $TGF{\beta}$(20 ng/ml) after treatment of the $IL-1{\beta}$, PDGF-BB and $TGF\;{\beta}$ for 2 weeks and unchanged by the other stimulants. 3. PDLsl7 was a novel protein coding the 142 amino acid peptides in the ORF and the nucleotide sequences of the obtained cDNA from RT-PCR was exactly same as the nucleotides of the database. 4. Immunohistochemical analysis showed that PDLsl7 is preferentially expressed in the PDL, differentiating osteoblast-like cells and stromal cells of the bone marrow in the adult mouse. 5. The expression of PDLsl7 protein was barely detectable in gingival fibroblasts, hematopoetic cells of the bone marrow and mature osteocytes of the alveolar bone. These results suggest that PDLsl7 might upregulated by PDGF-BB or $TGF{\beta}$ and acts at the initial stage of differentiation when the undifferentiated mesenchymal cells in the bone marrow and PDL differentiate into multiple cell types. However, more research needs to be performed to gain a better understanding of the exact function of PDLsl7 during the differentiation of bone marrow mesenchymal and PDL cells.

  • PDF

Bacterial PAMPs and Allergens Trigger Increase in $[Ca^{2+}]_i$-induced Cytokine Expression in Human PDL Fibroblasts

  • Son, Ga-Yeon;Shin, Dong Min;Hong, Jeong Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.291-297
    • /
    • 2015
  • An oral environment is constantly exposed to environmental factors and microorganisms. The periodontal ligament (PDL) fibroblasts within this environment are subject to bacterial infection and allergic reaction. However, how these condition affect PDL fibroblasts has yet to be elucidated. PDL fibroblasts were isolated from healthy donors. We examined using reverse transcription-polymerase chain reaction and measuring the intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$). This study investigated the receptors activated by exogenous bacterial pathogens (Lipopolysaccharide and peptidoglycan) and allergens (German cockroach extract and house dust mite) as well as these pathogenic mediators-induced effects on the intracellular $Ca^{2+}$ signaling in human PDL fibroblasts. Moreover, we evaluated the expression of pro-inflammatory cytokines (interleukin (IL)-$1{\beta}$, IL-6, and IL-8) and bone remodeling mediators (receptor activator of NF-${\kappa}B$ ligand and osteoprotegerin) and intracellular $Ca^{2+}$-involved effect. Bacterial pathogens and allergic mediators induced increased expression of pro-inflammatory cytokines, and these results are dependent on intracellular $Ca^{2+}$. However, bacterial pathogens and allergic mediators did not lead to increased expression of bone remodeling mediators, except lipopolysaccharide-induced effect on receptor activator of NF-${\kappa}B$ ligand expression. These experiments provide evidence that a pathogens and allergens-induced increase in $[Ca^{2+}]_i$ affects the inflammatory response in human PDL fibroblasts.

Skeletal myogenic differentiation of human periodontal ligament stromal cells isolated from orthodontically extracted premolars

  • Song, Minjung;Kim, Hana;Choi, Yoonjeong;Kim, Kyungho;Chung, Chooryung
    • The korean journal of orthodontics
    • /
    • v.42 no.5
    • /
    • pp.249-254
    • /
    • 2012
  • Objective: To investigate the stem cell-like characteristics of human periodontal ligament (PDL) stromal cells outgrown from orthodontically extracted premolars and to evaluate the potential for myogenic differentiation. Methods: PDL stromal cells were obtained from extracted premolars by using the outgrowth method. Cell morphological features, self-replication capability, and the presence of cell-surface markers, along with osteogenic, adipogenic, and chondrogenic differentiation, were confirmed. In addition, myogenic differentiation was induced by the use of 5-aza-2'-deoxycytidine (5-Aza) for DNA demethylation. Results: PDL stromal cells showed growth patterns and morphological features similar to those of fibroblasts. In contrast, the proliferation rates of premolar PDL stromal cells were similar to those of bone marrow and adipogenic stem cells. PDL stromal cells expressed surface markers of human mesenchymal stem cells (i.e., CD90 and CD105), but not those of hematopoietic stem cells (i.e., CD31 and CD34). PDL stromal cells were differentiated into osteogenic, adipogenic, and chondrogenic lineages. Myotube structures were induced in PDL stromal cells after 5-Aza pretreatment, but not in the absence of 5-Aza pretreatment. Conclusions: PDL stromal cells isolated from extracted premolars can potentially be a good source of postnatal stem cells for oromaxillofacial regeneration in bone and muscle.

Anti-inflammatory effect of (-)-epigallocatechin-3-gallate on Porphyromonas gingivalis lipopolysaccharide-stimulated fibroblasts and stem cells derived from human periodontal ligament

  • Jung, Im-Hee;Lee, Dong-Eun;Yun, Jeong-Ho;Cho, Ah-Ran;Kim, Chang-Sung;You, Yoon-Jeong;Kim, Sung-Jo;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.6
    • /
    • pp.185-195
    • /
    • 2012
  • Purpose: (-)-epigallocatechin-3-gallate (EGCG) has been reported to exert anti-inflammatory and antibacterial effects in periodontitis. However, its exact mechanism of action has yet to be determined. The present in vitro study evaluated the anti-in-flammatory effects of EGCG on human periodontal ligament fibroblasts (hPDLFs) and human periodontal ligament stem cells (hPDLSCs) affected by bacterial lipopolysaccharide (LPS) extracted from Porphyromonas gingivalis. Methods: hPDLFs and hPDLSCs were extracted from healthy young adults and were treated with EGCG and/or P. gingivalis LPS. After 1, 3, 5, and 7 days from treatment, cytotoxic and proliferative effects were evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and bromodeoxyuridine assay, respectively. And then, the gene expressions of hPDLFs and hPDLSCs were observed for interleukin (IL)-$1{\beta}$, IL-6, tumor necrosis factor (TNF)-${\alpha}$, osteoprotegerin (OPG), receptor activator of nuclear factor kappa-B ligand (RANKL), and RANKL/OPG using real-time polymerase chain reaction (PCR) at 0, 6, 24, and 48 hours after treatment. The experiments were performed with the following groups for hPDLFs and hPDLSCs; 1) No treat, 2) EGCG alone, 3) P. gingivalis LPS alone, 4) EGCG+P. gingivalis LPS. Results: The 20 ${\mu}M$ of EGCG and 20 ${\mu}g/mL$ of P. gingivalis LPS had the lowest cytotoxic effects, so those concentrations were used for further experiments. The proliferations of hPDLFs and hPDLSCs increased in all groups, though the 'EGCG alone' showed less increase. In real-time PCR, the hPDLFs and hPDLSCs of 'EGCG alone' showed similar gene expressions to those cells of 'no treat'. The gene expressions of 'P. gingivalis LPS alone' in both hPDLFs and hPDLSCs were highly increased at 6 hours for IL-$1{\beta}$, IL-6, TNF-${\alpha}$, RANKL, and RANKL/OPG, except the RANKL/OPG in hPDLSCs. However, those increased gene expressions were down-regulated in 'EGCG+P. gingivalis LPS' by the additional treatment of EGCG. Conclusions: Our results demonstrate that EGCG could exert an anti-inflammatory effect in hPDLFs and hPDLSCs against a major pathogen of periodontitis, P. gingivalis LPS.

Expression of Periostin and S100A2 - S100A4 - Calcium Binding Proteins mRNA in Human Gingival Fibroblasts and Periodontal Ligament Fibroblasts (사람 치은섬유세포와 치주인대섬유모세포에서 Periostin과 S100A2-, S100A4-칼슘결합단백 mRNA의 발현)

  • Kim, Byung-Ock;Han, Kyung-Yoon;Choi, Young-Sun;Kim, Se-Hoon;Park, Byung-Gi;Kim, Heung-Joong;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.109-122
    • /
    • 2001
  • Gingival fibroblasts(GF) and periodontal ligament fibroblasts(PDLF) are the major cellular components of periodontal soft connective tissues, but the precise molecular biological differences between these cells are not yet known. In the present study, we investigated the expression of S100A4, S100A2 calcium-binding protein and osteoblast-specific factor 2(OSF-2, Periostin) mRNA in GF and PDLF in vitro through the process of reverse transcription-polymerase chain reaction(RT-PCR) and Northern blot analysis in each. Human GF and PDLF were isolated from the gingival connective tissue and the middle third of freshly extracted healthy third molars. They were cultured in Dulbecco's Modified Eagle Medium(DMEM) containing 10% fetal bovine serum and cells in the third passage were used in the experiments. After extracting total RNA from cultured cells, RT-PCR and Northern analysis were performed using S100A4-, S100A2- and Periostin-specific oligonucleotide primers and subcloned cDNA probes in each. In PT-PCR and Northern analysis, the expression of S100A4 and Periostin mRNA in GF was slightly detectable. Interestingly, the expression of S100A4 and periostin mRNA in PDLF was much higher than that in GF. On the other hand, S100A2 mPNA was highly expressed in both GF and PDLF. Since there was a marked difference of S100A4 and Periostin expression between GF and PDLF in vitro, these data suggest that S100A4 and periostin could be used as a useful marker for distinguishing cultured gingival fibroblasts and periodontal ligament cells.

  • PDF