코로나19가 확산되면서 비대면 활동이 요구되었고, 서비스로봇의 활용 분야는 점차 증가되고 있다. 본 논문은 뉴스 빅데이터 분석시스템인 빅카인즈를 활용하여 최근 3년(2018.10~2021.9)간 '서비스로봇 AND 비대면' 키워드가 포함된 키워드 검색을 통하여 코로나19 전후에 서비스로봇의 사용 증가 추세와 비대면과의 연관성을 분석하였다. 그 결과 1차(2018.10~2019.9) 기간에 키워드 빈도수 0건, 2차(2019.10~2020.9) 기간에 52건, 3차(2020.10~2021.9) 기간에는 112건으로 2차 기간에 비하여 115% 증가하였다. 2~3차 기간에 관계도 키워드 트렌드 연관어 분석에서 공통으로 거론되는 키워드로는 코로나19, 인공지능, 산업통상자원부, LG전자이었으며, 코로나19의 가중치가 제일 크게 나타나 분석 키워드에 연관성이 가장 큰 것을 확인할 수 있었다. 코로나19의 확산으로 비대면이 요구되고 정보통신 기술의 발전으로 서비스로봇은 그 활용 분야가 급격하게 증가하고 있다. 이에 따른 비대면 경제를 이끌 서비스 로봇의 상용화를 위하여 안전, 성능 분야의 표준화 및 전문성이 요구되는 인력양성이 시급한 실정이다.
논토양과 쌀의 비소 오염은 식품의 안전성과 관련하여 관심이 증가하고 있다. 본 연구는 우리나라 비오염 논토양에서 생산된 현미와 백미 중 비소 총함량 및 무기비소 함량을 조사하였다. 쌀 중 비소화학종은 1% 질산($HNO_3$)을 사용하여 추출하였고 HPLC-ICP-MS로 분석하였다. 현미 및 백미 중 총비소 함량은 각각 0.18, $0.11mg\;kg^{-1}$이었고, 무기비소의 함량은 각각 0.11, $0.07mg\;kg^{-1}$ 이었다. 이들 함량은 코덱스 식품규격위원회 권장 기준인 현미 $0.35mg\;kg^{-1}$과 백미 $0.2mg\;kg^{-1}$을 초과하지 않았고 우리나라 백미 기준 이하로 안전한 수준이었다. 현미 및 백미 중 총비소 함량에 대한 무기비소의 평균 함량비은 각각 0.65과 0.67이고 범위는 0.08-1.0 수준이었다. 본 조사에서 수행한 백미 중 무기비소 모니터링 한 결과에 대한 발암 위해도는 평균과 범위가 $9.37{\times}10^{-5}$ ($2.38{\times}10^{5}-1.90{\times}10^{-4}$)로 허용 수준인 $10^{-6}-10^{-4}$을 고려할 때 장기간의 쌀 섭취를 통한 암발생 확률은 낮게 나타나 위해성이 낮은 것으로 판단된다.
제조업 현장에서 제작 공정 수행 전 품질 불량 위험 공정을 예측하여 사전품질관리를 수행하는 것은 매우 중요한 일이다. 하지만 기존 엔지니어의 역량에 의존하는 방법은 그 제작공정의 종류와 수가 다양할수록 인적, 물리적 한계에 부딪힌다. 특히 원자력 주요기기 제작과 같이 제작공정이 매우 광범위한 도메인 영역에서는 그 한계가 더욱 명확하다. 본 논문은 제조업 현장에서 자연어 처리 및 기계학습을 활용하여 품질 불량 위험 공정을 예측하는 방법을 제시하였다. 이를 위해 실제 원자력발전소에 설치되는 주기기를 제작하는 공장에서 6년 동안 수집된 제작 기록의 텍스트 데이터를 활용하였다. 텍스트 데이터의 전처리 단계에서는 도메인 지식이 잘 반영될 수 있도록 단어사전에 Mapping 하는 방식을 적용하였고, 문장 벡터화 과정에서는 N-gram, TF-IDF, SVD를 결합한 하이브리드 알고리즘을 구성하였다. 다음으로 품질 불량 위험 공정을 분류해내는 실험에서는 k-fold 교차 검증을 적용하고 Unigram에서 누적 Trigram까지 여러 케이스로 나누어 데이터셋에 대한 객관성을 확보하였다. 또한, 분류 알고리즘으로 나이브 베이즈(NB)와 서포트 벡터 머신(SVM)을 사용하여 유의미한 결과를 확보하였다. 실험결과 최대 accuracy와 F1-score가 각각 0.7685와 0.8641로서 상당히 유효한 수준으로 나타났다. 또한, 수행해본 적이 없는 새로운 공정을 예측하여 현장 엔지니어들의 투표와의 비교를 통해서 실제 현장에 자연스럽게 적용할 수 있음을 보여주었다.
교량의 균열은 교량의 상태를 나타내는 중요한 요소이며 주기적인 모니터링 대상이다. 그러나 전문가가 육안으로 점검하는 것은 비용, 시간, 신뢰성 면에서 문제가 있다. 따라서 최근에는 이러한 문제를 극복하기 위해 자동화 가능한 딥러닝 모델을 적용하기 위한 연구가 시작되었다. 딥러닝 모델은 예측할 상황에 대한 충분한 데이터가 필요하지만 교량 균열 데이터는 상대적으로 얻기가 어렵다. 특히 교량의 설계, 위치, 공법에 따라 교량 균열의 형상이 달라질 수 있어 특정 상황에서 많은 양의 균열 데이터를 수집하기 어려움이 따른다. 본 연구에서는 적대적 생성 신경망(Generative Adversarial Network, GAN)을 통해 불충분한 균열 데이터를 생성하고 학습하는 균열 탐지 모델을 개발했다. 본 연구에서는 GAN을 이용하여 주어진 균열 데이터와 통계적으로 유사한 데이터를 성공적으로 생성했으며, 생성된 이미지를 사용하지 않을 때보다 생성된 이미지를 사용할 때 약 3% 더 높은 정확도로 균열 감지가 가능했다. 이러한 접근 방식은 교량의 균열 검출이 필요하지만 균열 데이터는 충분하지 않거나 하나의 클래스에 대한 데이터가 상대적으로 적을 때 감지 모델의 성능을 효과적으로 향상시킬 것으로 기대된다.
본 연구에서는 고폭탄과 같은 고위험 탄약에 대한 신뢰성 시험을 수행하는 기관에서 갖추어야 할 방호벽에 대해 유효 방호력을 평가하였다. 고폭탄이 인원에게 줄 수 있는 영향은 폭발압력에 의한 고막, 폐의 손상 등과 폭발과 동시에 발생한 파편에 의해 받을 수 있는 관통상이 있다. 따라서 COMP B가 충전되어있는 고폭탄을 기준으로, 피해 정도를 산정하기 위한 폭발방호 이론과 수치적 계산과 시뮬레이션을 통한 방호력 검증을 수행하였다. 수치적 계산 결과 시나리오로 설정된 방호벽과 폭발원점의 거리(7 m)에서 고폭탄 폭발 시 방호벽에 미치는 최대 폭발압력은 77.74 kPa이었으며, 50 mm 두께의 방호벽에 대한 파편의 관통력은 41.34 mm로 계산되었다. AUTODYN을 활용한 시뮬레이션 검증에서는 방호벽과 인원에게 영향을 주는 최대 폭발압력은 각각 58.68 kPa과 18.175 kPa이었으며, 파편의 관통력은 35.56 mm였다. 이 수치는 인간의 피해 한계보다 낮은 수치로 방호벽의 방호력은 유효할 것으로 판단되었다.
최근 들어 강화 학습은 심층 신경망 기술과 결합되어 바둑, 체스와 같은 보드 게임, Atari, StartCraft와 같은 컴퓨터 게임, 로봇 물체 조작 작업 등과 같은 다양한 분야에서 매우 놀라운 성공을 거두었다. 하지만 이러한 심층 강화 학습은 행동, 상태, 정책 등을 모두 벡터 형태로 표현한다. 따라서 기존의 심층 강화 학습은 학습된 정책의 해석 가능성과 일반성에 제한이 있고, 도메인 지식을 학습에 효과적으로 활용하기도 어렵다는 한계성이 있다. 이러한 한계점들을 해결하기 위해 제안된 새로운 관계형 강화 학습 프레임워크인 dNL-RRL은 센서 입력 데이터와 행동 실행 제어는 기존의 심층 강화 학습과 마찬가지로 벡터 표현을 이용하지만, 행동, 상태, 그리고 학습된 정책은 모두 논리 서술자와 규칙들로 나타내는 관계형 표현을 이용한다. 본 논문에서는 dNL-RRL 관계형 강화 학습 프레임워크를 이용하여 제조 환경 내에서 운송용 모바일 로봇을 위한 행동 정책 학습을 수행하는 효과적인 방법을 제시한다. 특히 본 연구에서는 관계형 강화 학습의 효율성을 높이기 위해, 인간 전문가의 사전 도메인 지식을 활용하는 방안들을 제안한다. 여러 가지 실험들을 통해, 본 논문에서 제안하는 도메인 지식을 활용한 관계형 강화 학습 프레임워크의 성능 개선 효과를 입증한다.
한번 배출된 수은은 소멸되지 않고 자연환경에 축적 및 순환되며 생태계 및 인류보건에 심각한 위해를 준다. 미국에서는 수은의 인위적 배출량의 약 32 %를 차지하는 것으로 알려진 석탄 화력발전소의 배출가스의 증기수은 제거를 위해 황점착 활성탄 사용을 고려하고 있다. 본 연구애서는 석탄 연소설비 배출가스 중의 증기상의 원소수은을 저감하기 위한 고효율의 다공성 수은흡착 소재를 개발하여 소재의 수은 흡착 특성을 조사하였다. 30℃에서 증기수은 흡착능 조사결과 수은흡착용으로 상용화된 활성탄 Darco FGD 대비 실리카 나노소재인 MCM-41의 경우는 약 35 %에 불과하였으나 황을 1.5% 함침한 경우 133 %까지 증가하였고, 폐동 재생공정에서 회수한 용광로 비산재의 경우는 523 %의 효율을 보였다. 또한 30 ℃, 80 ℃ 및 120 ℃의 온도에서 흡착능을 조사한 결과 80 ℃에서 가장 우수한 흡착성능을 나타냈다. MCM-41은 실리카 나노튜브로 구조가 견고해 여러 번 재사용할 수 있을 뿐더러 활성탄을 사용할 경우 우려되는 열점형성으로 인한 화재 가능성이 없어 추가적인 장점까지 지니고 있다.
The 9th International Conference on Construction Engineering and Project Management
/
pp.1249-1249
/
2022
The facade, an exterior material of a building, is one of the crucial factors that determine its morphological identity and its functional levels, such as energy performance, earthquake and fire resistance. However, regardless of the type of exterior materials, huge property and human casualties are continuing due to frequent exterior materials dropout accidents. The quality of the building envelope depends on the detailed design and is closely related to the back frames that support the exterior material. Detailed design means the creation of a shop drawing, which is the stage of developing the basic design to a level where construction is possible by specifying the exact necessary details. However, due to chronic problems in the construction industry, such as reducing working hours and the lack of design personnel, detailed design is not being appropriately implemented. Considering these characteristics, it is necessary to develop the detailed design process of exterior materials and works based on the domain-expert knowledge of the construction industry using artificial intelligence (AI). Therefore, this study aims to establish a detailed design automation algorithm for AI-based condition-responsive exterior wall panels and their back frames. The scope of the study is limited to "detailed design" performed based on the working drawings during the exterior work process and "stone panels" among exterior materials. First, working-level data on stone works is collected to analyze the existing detailed design process. After that, design parameters are derived by analyzing factors that affect the design of the building's exterior wall and back frames, such as structure, floor height, wind load, lift limit, and transportation elements. The relational expression between the derived parameters is derived, and it is algorithmized to implement a rule-based AI design. These algorithms can be applied to detailed designs based on 3D BIM to automatically calculate quantity and unit price. The next goal is to derive the iterative elements that occur in the process and implement a robotic process automation (RPA)-based system to link the entire "Detailed design-Quality calculation-Order process." This study is significant because it expands the design automation research, which has been rather limited to basic and implemented design, to the detailed design area at the beginning of the construction execution and increases the productivity by using AI. In addition, it can help fundamentally improve the working environment of the construction industry through the development of direct and applicable technologies to practice.
연구목적: 본 연구는 미생물의 비열 멸균 기술로서 실내 공간 내 유전체 장벽 방전 플라즈마 모듈의 방전시간에 따른 오존 발생 농도변화의 값을 통한 실내 공간 내 부유세균 살균 성능을 분석하였다. 연구방법: 76m3체적 공간의 공조장치의 공기배출 부분에 DBD 플라즈마 모듈을 설치하고 2m 떨어진 거리에서 DBD 플라즈마 처리 시간에 따라 공기 시료를 포집하여 미처리 대조군과 비교하여 부유세균 저감 효과를 분석하였다. 또한 DBD 플라즈마 방전에 따른 오존발생농도를 확인하였다. 연구결과: 대조군의 총 세균수는 1.83~2.00 logCFU/m3의 결과가 나왔으며, 시험군이 대조군에 비해 실내공기 중 부유세균의 최소 92.057%에서 최대 99.999%의 저감 효과를 보였다. 또한 평균 오존발생농도 0.04ppm으로 오존 발생농도 기준인 0.05ppm보다 낮은 결과를 확인하였다. 결론: 인체에 무해한 오존량과 DBD방전 플라즈마량을 조절함으로써 공기 중 부유세균, 바이러스등의 감염병 전파 방지의 수단으로 플라즈마 방전을 사용함에 기준이 될 것으로 사료된다.
본 연구에서는 톨루엔, 크실렌, 스티렌 등의 폭로에 대한 측정지표로써 체내에서 대사되어 뇨로 배설되는 마뇨산, 메틸마뇨산, 만델산과 페닐글리옥실산에 대한 신속한 동시분석법을 개발하였다. 일반 충전형 ODS 칼럼과 달리 빠른 유속에서도 고분리능을 구현할 수 있는 monolithic 칼럼을 사용하였고, 이동상으로는 ion-pairing reagent인 tetrabutylammonium bromide 5.5 g과 potassium phosphate monobasic 1.5 g을 증류수 1 L에 녹인 후, 메탄올 0.6 L와 혼합하여 조제한 것을 사용하였으며, 유속 2.4 mL/min에서 분석한 결과, 6종의 유기용매 대사체들을 2.5분 이내에 검출하였다. 일정 농도 범위 내에서 6종 화합물 모두 검량선의 상관계수($r^2$)가 0.9993 이상으로 양호한 직선성을 나타내었다. 각 화합물별로 5가지 농도에 대하여 하루에 5번 반복 실험하여 구한 일내 정밀성 %C.V.와 정확성은 0.01~7.32%, 83.9~116.3%이고 5일간 반복 실험하여 구한 일간 정밀성 %C.V.는 0.01~7.16%이다. 본 분석법은 뇨 중 유기용매 대사체의 분석에 필요한 충분한 감도와 특이성, 직선성, 정확성 및 정밀성을 가지며, 한국산업안전공단 산하 산업안전보건연구원 직업병연구센터의 정도관리 소변시료를 분석 비교하여 그 신뢰성을 확보하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.