• Title/Summary/Keyword: human osteoblast-like cell

Search Result 54, Processing Time 0.022 seconds

Biological Activities of HA-coated Zirconia (HA-coated Zirconia의 생물학적 활성도에 관한 연구)

  • Nam, Suk-Woo;Kim, Hae-Won;Kim, Hyoun-Ee;Yang, Seung-Min;Shin, Seung-Youn;Lee, Yong-Moo;Chung, Chong-Pyoung;Han, Soo-Boo;Choi, Sang-Mook;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2003
  • Hydroxyapatite(HA) has been extensively used as bone graft materials and tooth implant surface coating materials because of its biocompatibility and osteoconductive properties. However, as HA is intrinsically poor in mechanical properties, zirconia($ZrO_2$) was incorporated with HA as reinforcing phases for improvement of mechanical properties. The purpose of this study was to investigate the biological activities of HA-coated zirconia through the cell proliferation test, measurements of alkaline phosphatase activity, and histologic examination. Four kinds of tested blocks were prepared according to the pore size (300-500${\mu}m$/500-700${\mu}m$) and the porosity (70%/90%). Cell proliferation and alkaline phosphatase activity was measured at 1, 7, 14 days. The number of cells proliferate after 7, 14 days were significantly increased in all groups when compared with that of the first day, but there was no significant difference between the 4 groups at each time period. At the 7 day, alkaline phosphatase activities of cells cultured in 4 groups were higher than that of the first day, but there was no significant difference between the 4 groups at each time period. The human gingival fibroblast and MG 63 cell was used to evaluate the cell cytotoxicity using MTT test. The materials tested in the current study turned out to be non-cytotoxic. In histologic examination(SEM), at 1 day there were many cells attached on the surfaces of all kinds of tested blocks. The number of cells were increased over time. At the 14 day, there were more cells proliferated than 1 day and some of the pores of blocks were partially filled with the proliferated cells. The in vitro response of osteoblast-like cells to the HA-coated zirconia showed comparable effect on transformation comparable to hydroxyapatite.

The Effect of Interleukin $1-{\beta}$, Platelet Derived Growth Factor-BB and Transforming Growth $Factor-{\beta}$ on the expression of PDLs17 mRNA in the Cultured Human Periodontal Ligament Fibroblasts (($IL-1{\beta}$), PDGF-BB 그리고 $TGF-{\beta}$가 사람 배양 치주인대 섬유모세포의 PDLs17 mRNA의 발현에 미치는 영향)

  • Lirn, Ki-Jung;Han, Kyung-Yoon;Kirn, Byung-Ock;Yeorn, Chang-Yeob;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.4
    • /
    • pp.787-801
    • /
    • 2001
  • The molecular mechanisms control the function of PDL(periodonta1 ligament) cells and/or fibroblasts remain unclear. PDLsl7, PDL-specific gene, had previousely identified the cDNA for a novel protein from cultured PDL fibroblasts using subtraction hybridization between gingival fibroblasts and PDL fibroblasts. The purpose of this study was to determine the regulation by growth factors and cytokines on PDLsl7 gene expression in cultured human periodontal ligament cells and observe the immunohistochemical localization of PDLsl7 protein in various tissues of mouse. Primary PDL fibroblasts isolated by scraping the root of the extracted human mandibular third molars. The cells were incubated with various concentration of human recombinant $IL-1{\beta}$, PDGF-BB and TGF\;${\beta}$ for 48h nd 2 weeks. At each time point total RNA was extracted and the levels of transcription ere assessed by reverse transcription-polymerase chain reaction (RT-PCR assay). polyclonal antiserum raised against PDLsl7 peptides, CLSVSYNRSYQINE and SEAVHETDLHDGC, were made, and stained the tooth, periodontium, developing bone, bone marrow and mid-palatal suture of the mouse. The results were as follows. 1. PDLsl7 mRNA levels were increased in response to PDGF (10ng/ml) and $TGF\;{\beta}$(20ng/ml) after treatment of the $IL-1{\beta}$, PDGF-BB and $TGF{\beta}$for 48 h. 2. PDLsl7 was up-regulated only by $TGF{\beta}$(20 ng/ml) after treatment of the $IL-1{\beta}$, PDGF-BB and $TGF\;{\beta}$ for 2 weeks and unchanged by the other stimulants. 3. PDLsl7 was a novel protein coding the 142 amino acid peptides in the ORF and the nucleotide sequences of the obtained cDNA from RT-PCR was exactly same as the nucleotides of the database. 4. Immunohistochemical analysis showed that PDLsl7 is preferentially expressed in the PDL, differentiating osteoblast-like cells and stromal cells of the bone marrow in the adult mouse. 5. The expression of PDLsl7 protein was barely detectable in gingival fibroblasts, hematopoetic cells of the bone marrow and mature osteocytes of the alveolar bone. These results suggest that PDLsl7 might upregulated by PDGF-BB or $TGF{\beta}$ and acts at the initial stage of differentiation when the undifferentiated mesenchymal cells in the bone marrow and PDL differentiate into multiple cell types. However, more research needs to be performed to gain a better understanding of the exact function of PDLsl7 during the differentiation of bone marrow mesenchymal and PDL cells.

  • PDF

Fabrication and Characteristic Evaluation of Three-Dimensional Blended PCL (60 wt %)/β-TCP (40 wt %) Scaffold (3 차원 Blended PCL (60 wt %)/β-TCP (40 wt %) 인공지지체의 제작 및 특성 평가)

  • Sa, Min-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.371-377
    • /
    • 2014
  • In tissue engineering, a scaffold is a three-dimensional(3D) structure that serves as a template for regeneration the functions of damaged tissues or organs. Among materials for scaffolds, polycaprolactone(PCL) and ${\beta}$-tricalcium phosphate(${\beta}$-TCP) are biodegradable and biocompatible. In this study, we fabricated 3D PCL, blended PCL (60 wt %)/${\beta}$-TCP (40 wt %), and pure ${\beta}$-TCP scaffolds by a multi-head scaffold fabrication system. Scaffolds with a pore size of $600{\pm}20{\mu}m$ was observed by scanning electron microscopy. The effects of 3D PCL, blended PCL (60 wt %)/${\beta}$-TCP (40 wt %) and pure ${\beta}$-TCP scaffolds were analyzed by evaluating their mechanical characteristics. In addition, in an in-vitro study using osteoblast-like saos-2 cells, we confirmed the effects of 3D scaffolds on cellular behaviors such as cell adhesion and proliferation. In summary, the 3D blended PCL (60 wt %)/${\beta}$-TCP (40 wt %) scaffold was found to be suitable for human cancellous bone in terms of its the compressive strength, biocompatibility, and osteoconductivity. Thus, blending PCL and ${\beta}$-TCP could be a promising approach for fabricating 3D scaffolds for effective bone regeneration.

Identification of Matrix Mineralization-Related Genes in Human Periodontal Ligament Cells Using cDNA Microarray (cDNA microarray에 의한 치주인대세포의 광물화 결절형성에 관여하는 유전자들의 분석)

  • Shin, Jae-Hee;Park, Jin-Woo;Yeo, Shin-Il;Noh, Woo-Chang;Kim, Moon-Kyu;Kim, Jung-Chul;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.sup2
    • /
    • pp.447-463
    • /
    • 2007
  • Periodontal ligament (PDL) cells have been known as multipotential cells, and as playing an important rolesin periodontal regeneration. The PDL cells are composed of heterogeneous cell populations which have the capacity to differentiate into either cementoblasts or osteoblasts, depending on needs and conditions. Therefore, PDL cells have the capacity to produce mineralized nodules in vitro in mineralization medium which include ascorbic acid, ${\beta}$-glycerophosphate and dexamethasone. In spite of these well-known osteoblast like properties of PDL cells, very little is known about the molecules involved in the formation of the mineralized nodules in the PDL cells. In the present study, we analysed gene-expression profiles during the mineralization process of cultured PDL cells by means of a cDNA microarray consisting of 3063 genes. Nodules of mineralized matrix were strongly stained with alizarin red S on the PDL cells cultured in the media with mineralization supplements. Among 3,063 genes analyzed, 35 were up-regulated more than two-fold at one or more time points in cells that developed matrix mineralization nodules, and 38 were down-regulated to less than half their normal level of expression. In accord with the morphological change we observed, several genes related to calcium-related or mineral metabolism were induced in PDL cells during osteogenesis, such as IGF-II and IGFBP-2. Proteogycan 1, fibulin-5, keratin 5, ,${\beta}$-actin, ${\alpha}$-smooth muscle actin and capping protein, and cytoskeleton and extracellular matrix proteins were up-regulated during mineralization. Several genes encoding proteins related to apoptosis weredifferentially expressed in PDL cells cultured in the medium containing mineralization supplements. Dkk-I and Nip3, which are apoptosis-inducing agents, were up-regulated, and Btf and TAXlBP1, which have an anti-apoptosis activity, were down-regulated during mineralization. Also periostin and S100 calciumbinding protein A4 were down-regulated during mineralization.