• Title/Summary/Keyword: human oral cancer cells

Search Result 209, Processing Time 0.024 seconds

Human papilloma virus in oral cancer

  • Kim, Soung Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.42 no.6
    • /
    • pp.327-336
    • /
    • 2016
  • Cervical cancer is the second most prevalent cancer among women, and it arises from cells that originate in the cervix uteri. Among several causes of cervical malignancies, infection with some types of human papilloma virus (HPV) is well known to be the greatest cervical cancer risk factor. Over 150 subtypes of HPV have been identified; more than 40 types of HPVs are typically transmitted through sexual contact and infect the anogenital region and oral cavity. The recently introduced vaccine for HPV infection is effective against certain subtypes of HPV that are associated with cervical cancer, genital warts, and some less common cancers, including oropharyngeal cancer. Two HPV vaccines, quadrivalent and bivalent types that use virus-like particles (VLPs), are currently used in the medical commercial market. While the value of HPV vaccination for oral cancer prevention is still controversial, some evidence supports the possibility that HPV vaccination may be effective in reducing the incidence of oral cancer. This paper reviews HPV-related pathogenesis in cancer, covering HPV structure and classification, trends in worldwide applications of HPV vaccines, effectiveness and complications of HPV vaccination, and the relationship of HPV with oral cancer prevalence.

An orthotopic nude mouse model of tongue carcinoma (구강암 세포주를 이종이식한 설암의 동소위 누드마우스 모델)

  • Chung, Jae-Seung;Kim, So-Mi;Hwang, Young-Sun;Zhang, Xianlan;Cha, In-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.6
    • /
    • pp.490-495
    • /
    • 2011
  • Introduction: Development of carcinoma on oral tongue may cause bilateral cervical lymph node metastasis, rapid invasion and growth of the cancer cells due to rich blood supply in muscle tissues. It is not only difficult to develop an animal experimental model, but also to proceed follow-up research after the development of such model as the induction of cancer lead to difficulty in taking nutrition for the experimental animals that often causes early death. Materials and Methods: IIn this study, author have transplanted YD-$10B_{mod}$ cells into nude mouse oral tongues with different cells number ($5{\times}10^4$, $5{\times}10^5$, $5{\times}10^6$ cells/mouse) and observed the development aspect of oral tongue cancers. Results: The cancer developed from orthotopic transplantation of YD-$10B_{mod}$ cells into nude mouse oral tongue show invasion and central necrosis of the tumor, similar to the cancers developed human oral tongue cancer. The difference in tumor size and the time of central necrosis development depending on the number of transplanted tumor cells shows the feasibility of extending the survival period of the nude mouse by limiting the transplanted tumor cells to < $5{\times}10^4$ cells/mouse or under per nude mouse. Conclusion: This nude mouse model could be used effectively in developing effective chemotheray agent and establishing an animal experimental model that can be used to study the mechanism of cervical lymph node metastasis of the oral tongue cancer.

Cis-3-O-p-hydroxycinnamoyl Ursolic Acid Induced ROS-Dependent p53-Mediated Mitochondrial Apoptosis in Oral Cancer Cells

  • Wang, Ching-Ying;Lin, Chen-Sheng;Hua, Chun-Hung;Jou, Yu-Jen;Liao, Chi-Ren;Chang, Yuan-Shiun;Wan, Lei;Huang, Su-Hua;Hour, Mann-Jen;Lin, Cheng-Wen
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.54-62
    • /
    • 2019
  • Cis-3-O-p-hydroxycinnamoyl ursolic acid (HCUA), a triterpenoid compound, was purified from Elaeagnus oldhamii Maxim. This traditional medicinal plant has been used for treating rheumatoid arthritis and lung disorders as well as for its anti-inflammation and anticancer activities. This study aimed to investigate the anti-proliferative and apoptotic-inducing activities of HCUA in oral cancer cells. HCUA exhibited anti-proliferative activity in oral cancer cell lines (Ca9-22 and SAS cells), but not in normal oral fibroblasts. The inhibitory concentration of HCUA that resulted in 50% viability was $24.0{\mu}M$ and $17.8{\mu}M$ for Ca9-22 and SAS cells, respectively. Moreover, HCUA increased the number of cells in the sub-G1 arrest phase and apoptosis in a concentration-dependent manner in both oral cancer cell lines, but not in normal oral fibroblasts. Importantly, HCUA induced p53-mediated transcriptional regulation of pro-apoptotic proteins (Bax, Bak, Bim, Noxa, and PUMA), which are associated with mitochondrial apoptosis in oral cancer cells via the loss of mitochondrial membrane potential. HCUA triggered the production of intracellular reactive oxygen species (ROS) that was ascertained to be involved in HCUA-induced apoptosis by the ROS inhibitors YCG063 and N-acetyl-L-cysteine. As a result, HCUA had potential antitumor activity to oral cancer cells through eliciting ROS-dependent and p53-mediated mitochondrial apoptosis. Overall, HCUA could be applicable for the development of anticancer agents against human oral cancer.

Apoptotic Effects of 6-Gingerol in Human Breast Cancer Cells

  • Kim, Hyun-Woo;Oh, Deuk-Hee;Koh, Jeong-Tae;Lim, Young-Chai
    • International Journal of Oral Biology
    • /
    • v.40 no.4
    • /
    • pp.223-228
    • /
    • 2015
  • 6-Gingerol exerts anti-tumor effects in various cancer cell models. We evaluated the effect of 6-gingerol on the growth of MCF-7 breast cancer cells and MCF-10A breast epithelial cells to determine whether any growth-inhibitory effects found were attributable to apoptosis, and to elucidate the underlying mechanism of action. 6-Gingerol inhibited the viability of both cell lines in a dose- and time-dependent manner; however, the degree of inhibition was greater in MCF-7 than MCF-10A cells. By flow cytometry, induction of dose- and time-dependent apoptosis was found, and the magnitude of apoptosis was also markedly greater in MCF-7 than MCF-10A cells. Expression of caspase-3 and poly (ADP-ribose) polymerase (PARP) was observed in MCF-7 cells treated with 6-gingerol, and further cleavage of PARP occurred in these cells. We suggest that 6-gingerol induces apoptosis in human breast cancer cells mainly by promoting caspase-3 expression and subsequent degradation of PARP.

Trifolium pratense induces apoptosis through caspase pathway in FaDu human hypopharynx squamous carcinoma cells

  • Lee, Seul Ah;Park, Bo-Ram;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.44 no.3
    • /
    • pp.81-88
    • /
    • 2019
  • Trifolium pratense leaves (red clover) has been used in Oriental and European folk medicine for the treatment of whooping cough, asthma, and eczema, and is now being used to treat and alleviate the symptoms, such as hot flushes, cardiovascular health effects that occur in postmenopausal women. However, relatively little scientific data is available on the physiological activity of this plant. Therefore, in this study, we investigated the anti-cancer activity of T. pratense leaves using methanol extract of T. pratense leaves (MeTP) on human FaDu hypopharyngeal squamous carcinoma cells. MeTP inhibited the viability of FaDu cells by inducing apoptosis through the cleavage of procaspase-3, -7, and -9 and poly (adenosine diphosphate ribose-ribose) polymerase (PARP), downregulation of Bcl-2, and upregulation of Bax, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Live & dead assay, 4'6-diamidino-2-phenylindole stain, fluorescence-activated cell sorting analysis, and Western blot analysis. In addition, colony formation was slightly inhibited when FaDu cells were treated with a non-cytotoxic concentration (0.125 mg/mL) of MeTP and almost completely inhibited when cells were treated with 0.25 mg/mL MeTP. Collectively, these results indicate that MeTP induced cell apoptosis via caspase- and mitochondrial-dependent apoptotic pathways, and inhibited colony formation of cancer cells in FaDu human hypopharyngeal squamous carcinoma cells. These findings suggest MeTP should be considered for clinical development as a chemotherapeutic option in oral cancer.

Cell Behavior of Human Papillomavirus-immortalized and Tumorigenic Human Oral Keratinocytes Does Not Depend on the Integrin Expression

  • Park, Kyung-Hee;Min, Byung-Moo
    • International Journal of Oral Biology
    • /
    • v.32 no.3
    • /
    • pp.93-101
    • /
    • 2007
  • Cell behavior of the transformed cells is known to affect by interaction with extracellular matrix (ECM) proteins and integrin. To investigate the alterations of both integrin expression and cell-matrix interaction during neoplastic conversion of human oral kerationcytes, we studied expression levels of integrin subunits by flow cytometry and cellular responses to the ECM proteins in normal human oral keratinocytes (NHOKs), HPV-immortalized HOK-16B line, and three oral cancer cell lines established from HOK-16B line, CTHOK-16B-BaP, CTHOK-16B-DMBA, and CTHOK-16B-Dexa lines. The expression levels of ${\alpha}\;and\;{\beta}$ integrin subunits were shown decreased tendency in human oral keratinocytes undergoing immortalization and tumorigenic transformation except CTHOK-16B-DMBA line tested. Although ${\alpha}v{\beta}6$ integrin is known to be highly expressed in squamous cell carcinomas, and the altered integrin expression is suspected to be associated with cellular carcinogenesis, ${\alpha}v$ integrin subunit and ${\alpha}v{\beta}6$ integrin did not express in oral cancer cell lines tested. Cell behavior to the ECM proteins in HOK-16B line was generally similar to that of exponentially proliferating NHOKs. The adhesion activity profiles of type I collagen were very similar to that of its laminin counterparts, but fibronectin showed minimal adhesion activity under our conditions compared to the BSA control. The ability of the CTHOK-16B-BaP line to spread upon type I collagen and laminin markedly decreased, but migration was notably increased on type I collagen. In contrast, CTHOK-16B-DMBA and CTHOK-16B-Dexa lines spread less but migrated more upon type I collagen than immortalized HOK-16B line. These data indicate that downregulation of integrin subunits causes the changes of cellular responses to the ECM proteins during neoplastic conversion of human oral keratinocytes, and that cellular responses to the ECM proteins in oral cancer cell lines established by exposing different carcinogens are variable according to chemical carcinogens treatment.

The Cytotoxic Activity of 3,4,5-Trihydroxybenzoic Acid Methylester and Related Compounds against Skin and Oral Cancer Cell Lines (3,4,5-Trihydroxybenzoic Acid Methylester와 관련 화합물의 피부암 및 구강암 세포주에 대한 세포독성)

  • Lee, Jae-Sug;Han, Du-Seok;Kang, Jeong-Il;Baek, Jong-Min;Baek, Seung-Hwa
    • YAKHAK HOEJI
    • /
    • v.54 no.2
    • /
    • pp.112-121
    • /
    • 2010
  • The cytotoxic activity of 33,4,5-trihydroxybenzoic acid methylester and related compounds on the growth of normal cell lines, human skin melanoma cells and human oral epithelioid cell line were evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and 2,3-bis-[2-methoxy-4-nitro-5-sulfo-phenyl]-2-H-tetrazolium-5-caboxanilide (XTT) methods. 3,4,5-Trihydroxybenzoic acid methylester decreased the cell viability of human skin melanoma cells and human oral epithelioid cells shown by the MTT method and the cell adhesion activity of human skin melanoma cells and human oral epithelioid cells shown by the XTT method. In light microscopy, 100 ${\mu}M$ 3,4,5-trihydroxybenzoic acid methylester showed the highest cytotoxic activity. These results suggest that 3,4,5-trihydroxybenzoic acid methylester has a potential anticancer activity.

Anticancer effects of Ulva compressa extracts on FaDu human hypopharangeal squamous carcinoma cells in vitro

  • Jang, Ji Yun;Jung, Seo Yun;Park, Bo-Ram;Lee, Seul Ah;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.47 no.3
    • /
    • pp.41-48
    • /
    • 2022
  • Ulva compressa Linnaeus (UCL) is a green algae seaweed that performs photosynthesis and is used as a food material in some Asian regions including Korea. It is known to be the dominant species in copper ion-contaminated seas, and many studies on copper ion resistant mechanisms have been reported. UCL is known to have an excellent antioxidant effect, but limited information is available regarding its other physiological activities. In this study, we investigated the anticancer activity of 30% prethanol extracts of Ulva compressa Linnaeus (30% PeUCL) and the underlying mechanisms of its activity on human FaDu hypopharyngeal squamous carcinoma cells. The 30% PeUCL extracts suppressed FaDu cell viability without affecting normal cells (L929), as determined by MTT and viability assays. Furthermore, the 30% PeUCL extracts induced apoptosis, as determined by DAPI staining. The 30% PeUCL extracts inhibited colony formation effectively as well as wound-healing of FaDu cells, even at noncytotoxic concentrations. In addition, 30% PeUCL extracts induced apoptosis significantly through proteolytic cleavage of caspase-3, -7, and -9, and poly (ADP-ribose) polymerase, and by downregulation of Bcl-2 and upregulation of Bax in FaDu cells, as determined by Western blot analysis. Collectively, these results suggest that the inhibitory effect of 30% PeUCL extracts on the growth of oral cancer cells, colony formation and wound-healing may be mediated by caspase- and mitochondrial-dependent apoptotic pathways in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, 30% PeUCL extracts can be administered as a natural chemotherapeutic drug for the treatment of human oral cancers.

Autophagy Inhibition Promotes Quercetin Induced Apoptosis in MG-63 Human Osteosarcoma cells

  • Park, Sung-Jin;Yu, Su-Bin;Kim, Yong-Ho;Kim, In-Ryoung;Park, Hae-Ryoun;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.40 no.2
    • /
    • pp.85-91
    • /
    • 2015
  • Quercetin is a natural flavonoid phytochemical that is extracted from various plants. Having an advantages due to its varied biological properties, such as anti-inflammatory, anti-viral, anti-oxidant, and anti-cancer effects, quercetin is used to treat many diseases. Recently, it has been reported that autophagy inhibition may play a key role in anti-cancer therapy. Therefore, in this study, we investigated the molecular mechanisms and anti-cancer effects of quercetin in human osteosarcoma cells via autophagy inhibition. We ascertained that quercetin inhibited cell proliferation and induced cell death, these process is demonstrated that apoptosis via the mitochondrial pathway and the caspase cascade. Quercetin also induced autophagy which was inhibited by 3-MA, autophagy inhibitor and the blockade of autophagy promoted the quercetin-induced apoptosis, confirming that autophagy is a pro-survival process. Thus, these findings demonstrate that quercetin is an effective anti-cancer agent, and the combination of quercetin and an autophagy inhibitor should enhance the effect of anti-cancer therapy.

Growth Inhibition of Human Head and Neck Squamous Cell Carcinomas by Angelica decursiva Extracts

  • Shin, Woo-Cheol;Kim, Chun-Sung;Kim, Heung-Joong;Lee, Myoung-Hwa;Kim, Hye-Ryun;Kim, Do-Kyung
    • International Journal of Oral Biology
    • /
    • v.35 no.4
    • /
    • pp.153-158
    • /
    • 2010
  • Angelica decursiva has been used in Korean traditional medicine as an antitussive, an analgesic, an antipyretic and a cough remedy. However, the anti-cancer properties of Angelica decursiva have not yet been well defined. In our current study the cytotoxic activity of ethanol extracts of Angelica decursiva root (EEAD) and the mechanism of cell death exhibited by EEAD were examined in FaDu human head and neck squamous cell carcinoma cells. The cytotoxic effects of EEAD upon the growth of FaDu cells were examined with an MTT assay. In addition, the mechanism of cell death induced by EEAD was evaluated by DNA fragmentation analysis, immunoblotting and caspase activation measurements. EEAD induced apoptotic cell death in FaDu cells in a concentration- and time-dependent manner, as determined by MTT assay and DNA fragmentation analysis. Furthermore, the proteolytic processing of caspase-3, -7 and -9 was increased by EEAD treatment of FaDu cells. In addition, the activation of caspase-3 and -7 was detected in living FaDu cells by fluorescence microscopy. These results suggest that EEAD can induce apoptosis and suppress cell growth in cancer cells and may have utility as a future anticancer therapy.