• Title/Summary/Keyword: human operator control system

Search Result 144, Processing Time 0.024 seconds

Experimental Studies of Balancing Control of a Two-wheel Mobile Robot for Human Interaction by Angle Modification (이륜 구동 로봇의 균형 각도 조절을 통한 사람과의 상호 제어의 실험적 연구)

  • Lee, Seung Jun;Jung, Seul
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2013
  • This paper presents interaction force control between a balancing robot and a human operator. The balancing robot has two wheels to generate movements on the plane. Since the balancing robot is based on position control, the robot tries to maintain a desired angle to be zero when an external force is applied. This leads to the instability of the system. Thus a hybrid force control method is employed to react the external force from the operator to guide the balancing robot to the desired position by a human operator. Therefore, when an operator applies a force to the robot, desired balancing angles should be modified to maintain stable balance. To maintain stable balance under an external force, suitable desired balancing angles are determined along with force magnitudes applied by the operator through experimental studies. Experimental studies confirm the functionality of the proposed method.

Traded control of telerobot system with an autonomous visual sensor feedback (자율적인 시각 센서 피드백 기능을 갖는 원격 로보트 시스템교환 제어)

  • 김주곤;차동혁;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.940-943
    • /
    • 1996
  • In teleoperating, as seeing the monitor screen obtained from a camera instituted in the working environment, human operator generally controls the slave arm. Because we can see only 2-D image in a monitor, human operator does not know the depth information and can not work with high accuracy. In this paper, we proposed a traded control method using an visual sensor for the purpose of solving this problem. We can control a teleoperation system with precision when we use the proposed algorithm. Not only a human operator command but also an autonomous visual sensor feedback command is given to a slave arm for the purpose of coincidence current image features and target image features. When the slave arm place in a distant place from the target position, human operator can know very well the difference between the desired image features and the current image features, but calculated visual sensor command have big errors. And when the slave arm is near the target position, the state of affairs is changed conversely. With this visual sensor feedback, human does not need coincide the detail difference between the desired image features and the current image features and proposed method can work with higher accuracy than other method without, sensor feedback. The effectiveness of the proposed control method is verified through series of experiments.

  • PDF

Comparison of Display Visual Effects in Control Task under Limited Reaction Time (반응시간제한시 제어작업의 디스플레이 시각효과 비교)

  • 오영진
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.47
    • /
    • pp.57-68
    • /
    • 1998
  • Work environments have been changed with the advent of new technologies, such as computer technology. However, human cognitive limits can't pace up with the change of work environment. Designing human-computer system requires knowledge and evaluation of the human cognitive processes which control information flow workload. Futhermore, under limited reaction time and/or urgent situation, human operator may the work stress, work error and resultant deleterious work environment. This paper evaluate the visual factors of major information processing factors(information density, amount of information, operational speed of speed)on operator performance of supervisory control under urgent(limited reaction time)environments which require deleterious work condition. To describe the work performance int the urgent work situations with time stress and dynamic event occurrence, a new concept of information density was introduced. For a series of experiments performed for this study, three independent variables(information amount, system proceeding speed, information density) were evaluated using five dependent variables. The result of statistical analyses indicate that the amount of information affected on all of five dependent measure. Number of failure and number of secondary task score were influenced by both amount of information and operational speed of system. However reaction time of secondary task were affected by both amount of information and information density. As a result, the deleterious factors for the performances seemed to be a scanning time to supervise each control panel. Consequently, a new display panel was suggest to reduce operator work load for scanning task showing better operator performance.

  • PDF

Design of auto-depth control system for submerged body (수증운동체 자동심도제어 시스템 설계연구)

  • 이동익;윤형식;최중락;양승윤
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.481-484
    • /
    • 1990
  • Normal operation when deeply submerged is a relatively easy task, and human operator control can often provide adequate performance. Near surface depthkeeping, on the other hand, is difficult to both man and machine. Because of the inherent limitation of the human operator, manual control may prove inadequate for near surface depthkeeping in some sea state. This paper describe the control algorithm of an automatic depth control system for submerged body that can be used for both near surface and deeply submerged depthkeeping operations. The computer simulations demonstrate the excellent depthkeeping performance of the controller under seaway effects.

  • PDF

Human Operator Modeling and Input Command Shaping Design for Manual Target Tracking System (수동표적추적장치의 휴먼운용자 모델링 및 입력명령형성기 설계)

  • Lee, Seok-Jae;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.21-30
    • /
    • 2007
  • A practical method to design the input shaping which generates control command is proposed in this paper, We suggest an experimental technique considering human operator's target tracking error to improve aiming accuracy which significantly affects hit probability. It is known that stabilization performance is one of the most important factors for ground combat vehicle system. In particular, stabilization error of the manual target tracking system mounted on moving vehicle directly affects hit probability. To reduce this error, we applied input command shaping method using preprocessing filtering and functional curve fitting. First of all, we construct the human operator model to consider effects of human operator on our system. Input shaping curve is divided into several regions to get rid of the above problems and to improve the system performance. At example design part, we chose three steps of functional command curve and determine the parameters of the function by the proposed design method. In order to verify the proposed design method, we carried out the experiments with real plant of a fighting vehicle.

Adaptive Mission Control Architecture with Flexible Levels of Autonomy (유연한 자율화 수준의 적응형 임무통제 아키텍처)

  • Wonik Park;Hojoo Lee;Joonsung Choi;Tokson Choe;Chonghui Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.265-276
    • /
    • 2024
  • The future battlefield operation concept does not focus on advanced and complete weapon systems, but requires a new battlefield operation concept that can effectively demonstrate offensive power by combining a large number of low-cost, miniaturized weapons. Recently, research on the autonomous application of major technologies that make up the mission control system is actively underway. However, since the mission control system is still dependent on the operator's operating ability when operating multiple robots, there are limitations to simply applying the automation technology of the existing mission control system. Therefore, we understand how changes in operator capabilities affect multi-robot operation and propose an adaptive mission control architecture design method that supports multi-robot integrated operation by adjusting the level of autonomy of the mission control system according to changes in operator capability.

Analysis of The Lateral Motion of Tractor-Trailer Combination (I) Operator/Vehicle System Model for Forward Maneuver

  • Torisu, R.;Mugucia, S.W.;Takeda, J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1137-1146
    • /
    • 1993
  • In order to analyze lateral control in the forward manuever of a tractor- trailer combination , a human operator model and a kinematic vehicle model were utilized for the operator/vehicle system. By combining the vehicle and operator models, a mathematical model of the closed-loop operator/vehicle system was formulated. A computer program was developed so as to simulate the motion of the tractor-trailer combination . In order to verify the operator/vehicle system model, the results of the field trials were compared with the simulated results. There was found to be reasonably good agreement between the two.

  • PDF

Analysis of the Lateral Motion of a Tractor-Trailer Combination (II) Operator/Vehicle System with Time Delay for Backward Maneuver

  • Mugucia, S.W.;Torisu, R.;Takeda, J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1147-1156
    • /
    • 1993
  • In order to analyze lateral control in the backward maneuver of a tractor -trailer combination , a kinematic vehicle model and a human operator model with time delay were utilized for the operator/vehicle system. The analysis was carried out using the frequency domain approach. The open-loop stability of the vehicle motion was analyzed through the transfer functions. The sensitivity of the stability of the vehicle motion. to a change in the steering angle, was also analyzed. A mathematical model of the closed -loop operator/vehicle system was then formulated. The closed -loop stability of the operator /vehicle system was then analyzed. The effect of the delay time on the system was also analyzed through computer simulation.

  • PDF

Design of Fuzzy Controller for a 2-Dimensional Wire-Driven Heavy Material Lifting System (2차원 와이어 구동식 중량물 권양 시스템을 위한 퍼지제어기 설계)

  • Lee, Yong-Chan;Lee, Hyeng-Jun;Lee, Yun-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.97-104
    • /
    • 2015
  • A fuzzy controller and a 2-dimensional wire-driven heavy material lifting system helping human operator are proposed in this paper. The 2-dimensional wire-driven heavy material lifting system is a kind of human-assistive systems in which a human is involved in the control loop. Most of the existing human-assistive control systems cannot consider human operator's characteristic. To consider human operator's characteristic, human's operating motion and requirement of reducing operator's force to lift a heavy material are considered in the design process of the proposed fuzzy controller. The performance of the proposed system is verified by experiments.

Interaction based Teleautonomous Control System

  • Lee, Geunho;Lee, Chang-Hoon;Nam, Chang-Woo;Kim, Sung-Wan;Kim, Euntai;Park, Mignon
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.21-24
    • /
    • 2002
  • There has been a growing need for interaction between human operator and a remote system to perform a complex task in an unpredictable environment and to operate an important work at a remote distance. The interaction becomes an important parameter in the teleautonomous operation because it permits the operator to control the system at remote distance. As the environmental uncertainties to be applied are getting increased, so is the difference between the plan of the operator and the execution of the system increased. Since the operator may be difficult to know the latest information from frequently changing environment due to time-varying delays, remote system may be hard to control in accordance with the operators command. Interactive Teleautonomous Control System (ITCS) is an approach based on interactions at these environments. The ITCS can be regarded as a control system using the transmitted a system's intnetion. The interactive teleautonomous control does not mean the interaction from operators point of view only considering feedback environmental information and forward simulation but an interaction between the operator and the system that transmits or receives intentions. The proposed ITCS is based on the intention communication that transmits their intentions to each other. The ITCS can correctly control the system in accordance with the operator's intention. Using the intention communication, a system intention is helpful to the operator. In the interactive teleautonomous control, the intention communication has to be provided by the interaction between the operator and the system.

  • PDF