• Title/Summary/Keyword: human neuronal stem cell

Search Result 49, Processing Time 0.037 seconds

Generation of Neural Progenitor Cells from Pig Embryonic Germ Cells

  • Choi, Kwang-Hwan;Lee, Dong-Kyung;Oh, Jong-Nam;Kim, Seung-Hun;Lee, Mingyun;Jeong, Jinsol;Choe, Gyung Cheol;Lee, Chang-Kyu
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.42-49
    • /
    • 2020
  • As a preclinical study, many researchers have been attempted to convert the porcine PSCs into several differentiated cells with transplantation of the differentiated cells into the pigs. Here, we attempted to derive neuronal progenitor cells from pig embryonic germ cells (EGCs). As a result, neuronal progenitor cells could be derived directly from pig embryonic germ cells through the serum-free floating culture of EB-like aggregates (SFEB) method. Treating retinoic acid was more efficient for inducing neuronal lineages from EGCs rather than inhibiting SMAD signaling. The differentiated cells expressed neuronal markers such as PAX6, NESTIN, and SOX1 as determined by qRT-PCR and immunostaining. These data indicated that pig EGCs could provide valid models for human therapy. Finally, it is suggested that developing transgenic pig for disease models as well as differentiation methods will provide basic preclinical data for human regenerative medicine and lead to the success of stem cell therapy.

Adansonia digitata L. Stem Bark Attenuates Epileptic Seizure, Depression, and Neurodegeneration by Mediating GABA and Glutamate in Pentylenetetrazol-Kindled Rats

  • Adamu Muhammad;Luteino Lorna Hamman;Samaila Musa Chiroma;Martha Orendu Oche Attah;Nathan Isaac Dibal
    • Journal of Pharmacopuncture
    • /
    • v.26 no.4
    • /
    • pp.327-337
    • /
    • 2023
  • Objectives: Epilepsy is a neurological condition characterized by repeated seizures attributable to synchronous neuronal activity in the brain. The study evaluated the effect of acetone extract of Adansonia digitata stem bark (ASBE) on seizure score, cognition, depression, and neurodegeneration as well as the level of Gamma-Aminobutyrate acid (GABA) and glutamate in Pentylenetetrazol-kindled rats. Methods: Thirty-five rats were assigned into five groups (n = 7). Groups 1-2 received normal saline and 35 mg/kg PTZ every other day. Groups 3-4 received 125 mg/kg and 250 mg/kg ASBE orally while group 5 received 5 mg/kg diazepam daily for twenty-six days. Group 3-5 received PTZ every other day, 30 mins after ASBE and diazepam. Results: The results showed that Pentylenetetrazol (PTZ) induces seizure, reduces mobility time in force swim test and decreases the normal cell number in the brain. It also significantly decreases (p < 0.05) catalase, superoxide dismutase and reduced glutathione activities compared to the ASBE pre-treated rats. Pre-treatment with ASBE reportedly decreases seizure activities significantly (p < 0.05) and increases mobility time in the force swim test. ASBE also significantly elevate (p < 0.05) the normal cell number in the hippocampus, temporal lobe, and dentate gyrus. Conclusion: ASBE reduced seizure activity and prevented depression in PTZ-treated rats. It also prevented neurodegeneration by regulating glutamate and GABA levels in the brain as well as preventing lipid peroxidation.

Differentiation of Dopaminergic Neurons from Mesenchymal-Like Stem Cells Derived from Human Umbilical Cord Vein

  • Kim, Ju-Ran;Lee, Jin-Ha;Jalin, Anjela Melinda;Lee, Chae-Yeon;Kang, Ah-Reum;Do, Byung-Rok;Kim, Hea-Kwon;Kam, Kyung-Yoon;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.173-181
    • /
    • 2009
  • One of the most extensively studied populations of multipotent adult stem cells are mesenchymal stem cells (MSCs). MSCs derived from the human umbilical cord vein (HUC-MSCs) are morphologically and immunophenotypically similar to MSCs isolated from bone marrow. HUC-MSCs are multipotent stem cells, differ from hematopoietic stem cells and can be differentiated into neural cells. Since neural tissue has limited intrinsic capacity of repair after injury, the identification of alternate sources of neural stem cells has broad clinical potential. We isolated mesenchymal-like stem cells from the human umbilical cord vein, and studied transdifferentiation-promoting conditions in neural cells. Dopaminergic neuronal differentiation of HUC-MSCs was also studied. Neural differentiation was induced by adding bFGF, EGF, dimethyl sulfoxide (DMSO) and butylated hydroxyanisole (BHA) in N2 medium and N2 supplement. The immunoreactive cells for $\beta$-tubulin III, a neuron-specific marker, GFAP, an astrocyte marker, or Gal-C, an oligodendrocyte marker, were found. HUC-MSCs treated with bFGF, SHH and FGF8 were differentiated into dopaminergic neurons that were immunopositive for tyrosine hydroxylase (TH) antibody. HUC-MSCs treated with DMSO and BHA rapidly showed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including NeuroD1, $\beta$-tubulin III, GFAP and nestin was markedly elevated during this acute differentiation. While the stem cell markers such as SCF, C-kit, and Stat-3 were not expressed after neural differentiation, we confirmed the differentiation of dopaminergic neurons by TH/$\beta$-tubulin III positive cells. In conclusion, HUC-MSCs can be differentiated into dopaminergic neurons and these findings suggest that HUC-MSCs are alternative cell source of therapeutic treatment for neurodegenerative diseases.

  • PDF

In vitro Neural Cell Differentiation of Genetically Modified Human Embryonic Stem Cells Expressing Tyrosine Hydroxylase (Tyrosine Hydroxylase 유전자가 주입된 인간 배아줄기세포의 체외 신경세포 분화)

  • Shin, Hyun-Ah;Kim, Eun-Young;Lee, Keum-Sil;Cho, Hwang-Yoon;Kim, Yong-Sik;Lee, Won-Don;Park, Se-Pill;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.1
    • /
    • pp.67-74
    • /
    • 2004
  • Objective: This study was to examine in vitro neural cell differentiation pattern of the genetically modified human embryonic stem cells expressing tyrosine hydroxylase (TH). Materials and Methods: Human embryonic stem (hES, MB03) cell was transfected with cDNAs cording for TH. Successful transfection was confirmed by western immunoblotting. Newly transfected cell line (TH#2/MB03) was induced to differentiate by two neurogenic factors retinoic acid (RA) and b-FGF. Exp. I) Upon differentiation using RA, embryoid bodies (EB, for 4 days) derived from TH#2/MB03 cells were exposed to RA ($10^{-6}M$)/AA ($5{\times}10^{-2}mM$) for 4 days, and were allowed to differentiate in N2 medium for 7, 14 or 21 days. Exp. II) When b-FGF was used, neuronal precursor cells were expanded at the presence of b-FGF (10 ng/ml) for 6 days followed by a final differentiation in N2 medium for 7, 14 or 21 days. Neuron differentiation was examined by indirect immunocytochemistry using neuron markers (NF160 & NF200). Results: After 7 days in N2 medium, approximately 80% and 20% of the RA or b-FGF induced Th#2/MB03 cells were immunoreactive to anti-NF160 and anti-NF200 antibodies, respectively. As differentiation continued, NF200 in RA treated cells significantly increased to 73.0% on 14 days compared to that in b-FGF treated cells (53.0%, p<0.05), while the proportion of cells expressing NF160 was similarly decreased between two groups. However, throughout the differentiation, expression of TH was maintained ($\sim$90%). HPLC analyses indicated the increased levels of L-DOPA in RA treated genetically modified hES cells with longer differentiation time. Conclusion: These results suggested that a genetically modified hES cells (TH#2/MB03) could be efficiently differentiated in vitro into mature neurons by RA induction method.

MicroRNA-203 As a Stemness Inhibitor of Glioblastoma Stem Cells

  • Deng, Yifan;Zhu, Gang;Luo, Honghai;Zhao, Shiguang
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.619-624
    • /
    • 2016
  • Glioblastoma stem cells (GBM-SCs) are believed to be a subpopulation within all glioblastoma (GBM) cells that are in large part responsible for tumor growth and the high grade of therapeutic resistance that is so characteristic of GBM. MicroRNAs (miR) have been implicated in regulating the expression of oncogenes and tumor suppressor genes in cancer stem cells, including GBM-SCs, and they are a potential target for cancer therapy. In the current study, miR-203 expression was reduced in $CD133^+$ GBM-SCs derived from six human GBM biopsies. MicroRNA-203 transfected GBM-SCs had reduced capacity for self-renewal in the cell sphere assay and increased expression of glial and neuronal differentiation markers. In addition, a reduced proliferation rate and an increased rate of apoptosis were observed. Therefore, miR-203 has the potential to reduce features of stemness, specifically in GBM-SCs, and is a logical target for GBM gene therapy.

Genetically Modified Human Embryonic Stem Cells Expressing Nurr1 and Their Differentiation into Tyrosine Hydroxylase Positive Cells in vitro.

  • Cho, Hwang-Yoon;Lee, Chang-Hyun;Kil, Kwang-Soo;Yoon, Ji-Yeon;Shin, Hyun-Ah;Lee, Gun-Soup;Lee, Young-Jae;Kim, Eun-Young;Park, SePill;Lim, Jin-Ho
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.104-104
    • /
    • 2003
  • As an effort to direct differentiation of human embryonic stem (hES, MB03) cells to dopamine-producing neuronal cells, Nurr1 was transfected using conventional transfection protocol into MB03 and examined the expression of tyrosine hydroylase (TH) after differentiation induced by retinoic acid (RA) and ascorbic acid (AA). Experimentally, cells were transfected with linearized Nurr1 cDNA in pcDNA3.1 (+)-hygovernight followed by selection in medium containing hygromycin-B (150 $\mu$/ml). Expression of Nurr1 mRNA was confirmed by RT-PCR and protein by immunocytochemistry in the drug resistant clones. In order to study the effect of Nurr1 protein on the differentiation pattern of ES cells, one of the positive clones (MBNr24) was allowed to form embryoid body (EB) for 2 days and were induced to differentiate for another 4 days using RA (1 $\mu M$) and AA (50 mM) (2-/4+ protocol) followed by selection in N2 medium for 10 or 20 days. After 10 days in N2 medium, cells immunoreactive to anti-GFAP, anti-TH, or anti-NF200 antibodies were 38.8%, 11%, and 20.5%, respectively. After 20 days in N2 medium, cells expressing GFAP, TH, or NF200 were 28%, 15% and 44.8%, respectively but approximately 9% of MB03 expressed TH protein when the cells were induced to differentiate using a similar prorocol, These results suggest that ectopic expression of Nurr1 enhances generation of TH+ cells as well as neuronal cells when hES cells were differentiated by 2-/4+ protocol.

  • PDF

Characterization of Ionic Currents in Human Neural Stem Cells

  • Lim, Chae-Gil;Kim, Sung-Soo;SuhKim, Hae-Young;Lee, Young-Don;Ahn, Seung-Cheol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.131-135
    • /
    • 2008
  • The profile of membrane currents was investigated in differentiated neuronal cells derived from human neural stem cells (hNSCs) that were obtained from aborted fetal cortex. Whole-cell voltage clamp recording revealed at least 4 different currents: a tetrodotoxin (TTX)-sensitive $Na^+$ current, a hyperpolarization-activated inward current, and A-type and delayed rectifier-type $K^+$ outward currents. Both types of $K^+$ outward currents were blocked by either 5 mM tetraethylammonium (TEA) or 5 mM 4-aminopyridine (4-AP). The hyperpolarization-activated current resembled the classical $K^+$ inward current in that it exhibited a voltage-dependent block in the presence of external $Ba^{2+}$ (30 ${\mu}$M) or $Cs^+$ (3${\mu}$M). However, the reversal potentials did not match well with the predicted $K^+$ equilibrium potentials, suggesting that it was not a classical $K^+$ inward rectifier current. The other $Na^+$ inward current resembled the classical $Na^+$ current observed in pharmacological studies. The expression of these channels may contribute to generation and repolarization of action potential and might be regarded as functional markers for hNSCs-derived neurons.

Neural and Cholinergic Differentiation of Mesenchymal Stem Cells Derived from the Human Umbilical Cord Blood (인간 제대혈액에서 유래된 중간엽 줄기세포의 신경 및 콜린성 분화)

  • Kam, Kyung-Yoon;Kang, Ji-Hye;Do, Byung-Rok;Kim, Hea-Kwon;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.11 no.3
    • /
    • pp.235-243
    • /
    • 2007
  • Human umbilical cord blood(HUCB) contains a rich source of hematopoietic stem cells, mesenchymal stem cells and endothelial cell precursors. Mesenchymal stem cells(MSCs) in HUCB are multipotent stem cells, differ from hematopoietic stem cells and can be differentiated into neural cells. We studied on transdifferentiation-promoting conditions in neural cells and cholinergic neuron induction of HUCB-derived MSCs. Neural differentiation was induced by addingdimethyl sulphoxide(DMSO) and butylated hydroxyanisole(BHA) in Dulbeco's Modified Essential Medium(DMEM) and fetal bovine serum(FBS). Differentiation of MSCs to cholinergic neurons was induced by combined treatment with basic fibroblast growth factor(bFGF), retinoic acid(RA) and sonic hedgehog(Shh). MSCs treated with DMSO and BHA rapidly assumed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including $\beta$-tubulin III, GFAP and MBP, was markedly elevated during this acute differentiation. The differentiation rate was about $32.3{\pm}2.9%$ for $\beta$-tubulin III-positive cells, $11.0{\pm}0.9%$ for GFAP, and $9.4{\pm}1.0%$ for Gal-C. HUCB-MSCs treated combinatorially with bFGF, RA and Shh were differentiated into cholinergic neurons. After cholinergic neuronal differentiation, the $\beta$-tubulin III-positive cell population of total cells was $31.3{\pm}3.2%$ and of differentiated neuronal population, $70.0{\pm}7.8%$ was ChAT-positive showing 3 folds higher in cholinergic population than neural induction. Conclusively, HUCB-derived MSCs can be differentiated into neural and cholinergic neurons and these findings suggest that HUCB are alternative cell source of treatment for neurodegenerative diseases such as Alzheimer's disease.

  • PDF