• Title/Summary/Keyword: human mesenchymal stem cell

Search Result 229, Processing Time 0.031 seconds

Protective Effect of NACA on Periodontal Stem Cell (NACA 처리에 따른 치주줄기세포 사멸 억제 효과)

  • Lee, Kyunghee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.3
    • /
    • pp.53-62
    • /
    • 2020
  • Purpose :Periodontal ligament stem cells maintain tissue homeostasis in periodontal ligament. The purpose of this study was to determine the characteristics of periodontal ligament stem cells isolated from premolar teeth and observe protective effects against oxidative damage caused by Triethylene glycol dimethacrylate (TEGDMA) following treatment with N-acetylsysteine amide (NACA) drug known as enzymatic antioxidants. Methods : Primary periodontal ligament stem cell (PDSC) culture was performed from simply extracted human premolar of orthodontic patients. The characteristics of the primary cultured PDSCs was analyzed using the FACS system. PDSCs was incubated with TEGDMA and NACA. The cell proliferation and survival was determined using WST-1 assay. Collected data were analyzed using SPSS Window 20. Results : Primary cultured PDSCs grow on the floor and develop rapidly in a cluster form from up to 14 days. The morphology of PDSCs showed the spindle-shaped cells and grew directionally. FACS analysis, In addition, positive expression of visible cells were observed in mesenchymal stem cell biomarkers. PDLSCs cell viability was significantly decreased at high concentration in both 3 and 6 hours after TEGDMA treatment. We observed a decrease in the number of cells as well as a morphological change of PDLSCs. Antioxidative effect was notable since the death of PDLSC death was significantly inhibited compared to the control group at 24 and 48 hours after NACA treatment. Conclusion : Therefore, based on the results of this study, further research should be encouraged considering the development of clinical treatment methods using various antioxidants as well as regenerative engineering techniques utilizing periodontal ligament stem cells.

Regenerative Effect of Adipose Derived Mesenchymal Stem Cells on Ganglion Cells in the Hypoxic Organotypic Retina Culture

  • Meital Ben Dov;Bryan Krief;Moshe Benhamou;Ainat Klein;Shula Schwartz;Anat Loewenstein;Adiel Barak;Aya Barzelay
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.244-249
    • /
    • 2023
  • Background and Objectives: To examine whether ischemic retinal ganglion cells (RGCs) will be salvaged from cell death by human adipose-derived mesenchymal stem cells (ADSCs) in an organotypic retina model. Methods and Results: Deprived of arterial oxygen supply, whole mice retinas were cultured as an ex vivo organotypic cultures on an insert membrane in a 24-well plate. The therapeutic potential of ADSCs was examined by co-culture with organotypic retinas. ADSCs were seeded on top of the RGCs allowing direct contact, or at the bottom of the well, sharing the same culture media and allowing a paracrine activity. The number of surviving RGCs was assessed using Brn3a staining and confocal microscopy. Cytokine secretion of ADSCs to medium was analyzed by cytokine array. When co-cultured with ADSCs, the number of surviving RGCs was similarly significantly higher in both treatment groups compared to controls. Analysis of ADSCs cytokines secretion profile, showed secretion of anti-apoptotic and pro-proliferative cytokines (threshold>1.4). Transplantation of ADSCs in a co-culture system with organotypic ischemic retinas resulted in RGCs recovery. Since there was no advantage to direct contact of ADSCs with RGCs, the beneficial effect seen may be related to paracrine activity of ADSCs. Conclusions: These data correlated with secretion profile of ADSCs' anti-apoptotic and pro-proliferative cytokines.

Stem cell-derived exosomes for dentin-pulp complex regeneration: a mini-review

  • Dina A. Hammouda;Alaa M Mansour;Mahmoud A. Saeed;Ahmed R. Zaher;Mohammed E. Grawish
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.20.1-20.13
    • /
    • 2023
  • This mini-review was conducted to present an overview of the use of exosomes in regenerating the dentin-pulp complex (DPC). The PubMed and Scopus databases were searched for relevant articles published between January 1, 2013 and January 1, 2023. The findings of basic in vitro studies indicated that exosomes enhance the proliferation and migration of mesenchymal cells, as human dental pulp stem cells, via mitogen-activated protein kinases and Wingless-Int signaling pathways. In addition, they possess proangiogenic potential and contribute to neovascularization and capillary tube formation by promoting endothelial cell proliferation and migration of human umbilical vein endothelial cells. Likewise, they regulate the migration and differentiation of Schwann cells, facilitate the conversion of M1 pro-inflammatory macrophages to M2 anti-inflammatory phenotypes, and mediate immune suppression as they promote regulatory T cell conversion. Basic in vivo studies have indicated that exosomes triggered the regeneration of dentin-pulp-like tissue, and exosomes isolated under odontogenic circumstances are particularly strong inducers of tissue regeneration and stem cell differentiation. Exosomes are a promising regenerative tool for DPC in cases of small pulp exposure or for whole-pulp tissue regeneration.

$In$ $vitro$ MRI and Characterization of Rat Mesenchymal Stem Cells Transduced with Ferritin as MR Reporter Gene (페리틴 리포터 유전자를 발현하는 백서 중간엽 줄기세포의 특성과 자기공명영상 연구)

  • Shin, Cheong-Il;Lee, Whal;Woo, Ji-Su;Park, Eun-Ah;Kim, Pan-Ki;Song, Hyun-Bok;Kim, Hoe-Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • Purpose : This study was performed to evaluate the characteristics of rat mesenchymal stem cells (RMSCs) transduced with human ferritin gene and investigate $in$ $vitro$ MRI detectability of ferritin-transduced RMSCs. Materials and Methods: The RMSCs expressing both myc-tagged human ferritin heavy chain subunit (myc-FTH) and green fluorescence protein (GFP) were transduced with lentiviurs. Transduced cells were sorted by GFP expression using a fluorescence-activated cell sorter. Myc-FTH and GFP expression in transduced cells were detected by immunofluorescence staining. The cell proliferative ability and viability were assessed by MTT assay. The RMSC surface markers (CD29+/CD45-) were analyzed by flow cytometry. The intracellular iron amount was measured spectrophotometically and the presence of ferritin-iron accumulation was detected by Prussian blue staining. $In$ $vitro$ magnetic resonance imaging (MRI) study of cell phantoms was done on 9.4 T MR scanner to evaluate the feasibility of imaging the ferritin-transduced RMSCs. Results: The myc-FTH and GFP genes were stably transduced into RMSCs. No significant differences were observed in terms of biologic properties in transduced RMSCs compared with non-transduced RMSCs. Ferritin-transduced RMSCs exhibited increased iron accumulation ability and showed significantly lower $T_2$ relaxation time than non-transduced RMSCs. Conclusion: Ferritin gene as MR reporter gene could be used for non-invasive tracking and visualization of therapeutic mesenchymal stem cells by MRI.

The effects of Pongamia pinnata on osteogenic differentiation and mineralization of human stem cells derived from the gingiva

  • Lee, Hyunjin;Uddin, Md. Salah;Kim, Yong-In;Choi, Sangho;Park, Jun-Beom
    • The Journal of Korean Medicine
    • /
    • v.38 no.4
    • /
    • pp.1-10
    • /
    • 2017
  • Objectives: The aim of the present study is to evaluate the effects of the extract of Pongamia pinnata on the morphology, viability, and differentiation potential of human stem cells derived from the gingiva. Methods: Stem cells obtained from gingivae were cultured in an osteogenic medium in the presence of methanol extract of Pongamia pinnata (PPT) at concentrations ranging from 0.001 to 1%. Evaluations of cell morphology and cellular viability were done at Day 1. Alkaline phosphatase activity assays and Alizarin red S staining were performed to evaluate the osteogenic differentiation of stem cells. Results: The morphology of stem cells in the presence of PPT at final concentrations of 0%, 0.001%, 0.01%, 0.1%, and 1% did not produce any noticeable changes when compared with the untreated control group. Application of PPT produced a significant increase in alkaline phosphatase activity when compared to the control group. The results of the Alizarin Red S staining showed a significant increase of absorbance with the 0.001% group. Conclusions: Based on these findings, it was concluded that PPT could produce beneficial effects on mesenchymal stem cells with enhanced osteogenic differentiation.

Two-Cell Spheroid Angiogenesis Assay System Using Both Endothelial Colony Forming Cells and Mesenchymal Stem Cells

  • Shah, Sajita;Kang, Kyu-Tae
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.474-480
    • /
    • 2018
  • Most angiogenesis assays are performed using endothelial cells. However, blood vessels are composed of two cell types: endothelial cells and pericytes. Thus, co-culture of two vascular cells should be employed to evaluate angiogenic properties. Here, we developed an in vitro 3-dimensional angiogenesis assay system using spheroids formed by two human vascular precursors: endothelial colony forming cells (ECFCs) and mesenchymal stem cells (MSCs). ECFCs, MSCs, or ECFCs+MSCs were cultured to form spheroids. Sprout formation from each spheroid was observed for 24 h by real-time cell recorder. Sprout number and length were higher in ECFC+MSC spheroids than ECFC-only spheroids. No sprouts were observed in MSC-only spheroids. Sprout formation by ECFC spheroids was increased by treatment with vascular endothelial growth factor (VEGF) or combination of VEGF and fibroblast growth factor-2 (FGF-2). Interestingly, there was no further increase in sprout formation by ECFC+MSC spheroids in response to VEGF or VEGF+FGF-2, suggesting that MSCs stimulate sprout formation by ECFCs. Immuno-fluorescent labeling technique revealed that MSCs surrounded ECFC-mediated sprout structures. We tested vatalanib, VEGF inhibitor, using ECFC and ECFC+MSC spheroids. Vatalanib significantly inhibited sprout formation in both spheroids. Of note, the $IC_{50}$ of vatalanib in ECFC+MSC spheroids at 24 h was $4.0{\pm}0.40{\mu}M$, which are more correlated with the data of previous animal studies when compared with ECFC spheroids ($0.2{\pm}0.03{\mu}M$). These results suggest that ECFC+MSC spheroids generate physiologically relevant sprout structures composed of two types of vascular cells, and will be an effective pre-clinical in vitro assay model to evaluate pro- or anti-angiogenic property.

Mesenchymal Stem Cells Suppress Severe Asthma by Directly Regulating Th2 Cells and Type 2 Innate Lymphoid Cells

  • Shin, Jae Woo;Ryu, Seungwon;Ham, Jongho;Jung, Keehoon;Lee, Sangho;Chung, Doo Hyun;Kang, Hye-Ryun;Kim, Hye Young
    • Molecules and Cells
    • /
    • v.44 no.8
    • /
    • pp.580-590
    • /
    • 2021
  • Patients with severe asthma have unmet clinical needs for effective and safe therapies. One possibility may be mesenchymal stem cell (MSC) therapy, which can improve asthma in murine models. However, it remains unclear how MSCs exert their beneficial effects in asthma. Here, we examined the effect of human umbilical cord blood-derived MSCs (hUC-MSC) on two mouse models of severe asthma, namely, Alternaria alternata-induced and house dust mite (HDM)/diesel exhaust particle (DEP)-induced asthma. hUC-MSC treatment attenuated lung type 2 (Th2 and type 2 innate lymphoid cell) inflammation in both models. However, these effects were only observed with particular treatment routes and timings. In vitro co-culture showed that hUC-MSC directly downregulated the interleukin (IL)-5 and IL-13 production of differentiated mouse Th2 cells and peripheral blood mononuclear cells from asthma patients. Thus, these results showed that hUC-MSC treatment can ameliorate asthma by suppressing the asthmogenic cytokine production of effector cells. However, the successful clinical application of MSCs in the future is likely to require careful optimization of the route, dosage, and timing.

Modulation of osteoblastic/odontoblastic differentiation of adult mesenchymal stem cells through gene introduction: a brief review

  • Kim, Ji-Youn;Kim, Myung-Rae;Kim, Sun-Jong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.2
    • /
    • pp.55-62
    • /
    • 2013
  • Bone tissue engineering is one of the important therapeutic approaches to the regeneration of bones in the entire field of regeneration medicine. Mesenchymal stem cells (MSCs) are actively discussed as material for bone tissue engineering due to their ability to differentiate into autologous bone. MSCs are able to differentiate into different lineages: osteo/odontogenic, adipogenic, and neurogenic. The tissue of origin for MSCs defines them as bone marrow-derived stem cells, adipose tissue-derived stem cells, and, among many others, dental stem cells. According to the tissue of origin, DSCs are further stratified into dental pulp stem cells, periodontal ligament stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, and dental papilla cells. There are numerous in vitro/in vivo reports suggesting successful mineralization potential or osteo/odontogenic ability of MSCs. Still, there is further need for the optimization of MSCs-based tissue engineering methods, and the introduction of genes related to osteo/odontogenic differentiation into MSCs might aid in the process. In this review, articles that reported enhanced osteo/odontogenic differentiation with gene introduction into MSCs will be discussed to provide a background for successful bone tissue engineering using MSCs with artificially introduced genes.

Characterization of Human Dental Pulp Cells from Supernumerary Teeth by Using Flow Cytometry Analysis (유세포 분석을 통한 과잉치 치수 유래 세포의 줄기세포 특성 연구)

  • You, Yonsook;Kim, Jongbin;Shin, Jisun;Lee, June-Haeng;Kim, Jongsoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.3
    • /
    • pp.337-342
    • /
    • 2019
  • The aim of this study was to analyze cells from human dental pulp tissue of impacted supernumerary teeth as stem cells with flow cytometry. Human dental pulp cells from 15 supernumerary teeth were identified their characteristics as stem cells by expression of mesenchymal stem cell markers through flow cytometry analysis at passage 3 and passage 10. Cluster of differentiation (CD) 73, CD 90, CD 34, CD 45 and STRO-1 cell surface markers were used to figure out characteristics of dental pulp stem cells from supernumerary teeth. At passage 3, the cell population showed positive expression of CD 73, CD90 and STRO-1, lacked expression of CD 34 and CD 45. At passage 10, CD 73, CD 90 and STRO-1 showed positive expression while CD 34 and CD 45 showed negative expression. This study indicated that dental pulp stem cells of supernumerary teeth had the properties of mesenchymal stem cells at both early and late passage. Impacted supernumerary teeth could be considered as a noble source of stem cells because of rapid growth and maintaining characteristics of stem cells until late passage.

In Vivo Angiogenic Capacity of Stem Cells from Human Exfoliated Deciduous Teeth with Human Umbilical Vein Endothelial Cells

  • Kim, Ji-Hye;Kim, Gee-Hye;Kim, Jae-Won;Pyeon, Hee Jang;Lee, Jae Cheoun;Lee, Gene;Nam, Hyun
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.790-796
    • /
    • 2016
  • Dental pulp is a highly vascularized tissue requiring adequate blood supply for successful regeneration. In this study, we investigated the functional role of stem cells from human exfoliated deciduous teeth (SHEDs) as a perivascular source for in vivo formation of vessel-like structures. Primarily isolated SHEDs showed mesenchymal stem cell (MSC)-like characteristics including the expression of surface antigens and in vitro osteogenic and adipogenic differentiation potentials. Moreover, SHEDs were positive for NG2, ${\alpha}$-smooth muscle actin (SMA), platelet-derived growth factor receptor beta ($PDGFR{\beta}$), and CD146 as pericyte markers. To prove feasibility of SHEDs as perivascular source, SHEDs were transplanted into immunodeficient mouse using Matrigel with or without human umbilical vein endothelial cells (HUVECs). Transplantation of SHEDs alone or HUVECs alone resulted in no formation of vessel-like structures with enough red blood cells. However, when SHEDs and HUVECs were transplanted together, extensive vessel-like structures were formed. The presence of murine erythrocytes within lumens suggested the formation of anastomoses between newly formed vessel-like structures in Matrigel plug and the host circulatory system. To understand underlying mechanisms of in vivo angiogenesis, the expression of angiogenic cytokine and chemokine, their receptors, and MMPs was compared between SHEDs and HUVECs. SHEDs showed higher expression of1VEGF, SDF-$1{\alpha}$, and $PDGFR{\beta}$ than HUVECs. On the contrary, HUVECs showed higher expression of VEGF receptors, CXCR4, and PDGF-BB than SHEDs. This differential expression pattern suggested reciprocal interactions between SHEDs and HUVECs and their involvement during in vivo angiogenesis. In conclusion, SHEDs could be a feasible source of perivascular cells for in vivo angiogenesis.