• Title/Summary/Keyword: human liver microsomes

Search Result 55, Processing Time 0.033 seconds

In vitro Metabolism of Pentoxifylline Metabolite M-l in Human Liver Microsomes (인체 간 microsome에서 pentoxifylline 대사체 M-1의 시험관내 대사)

  • 신혜순
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.834-842
    • /
    • 1999
  • The metabolism and pharmacokinetics of M-l, which is metabolite of pentoxifylline, have been studied in human liver microsomes. Biphasic kinetics was observed from the Eadie-Hofstee plot for the formation of both metabolites of M-l. For the kinetics of pentoxifylline, mean values of $V_{max1}{\;}and{\;}V_{max2}$ were 1,648 and 5,622 nmol/min/mg protein, and the estimated values of $K_{ml}{\;}and{\;}K_{m2}$ were 0.180 and 4.829 mM, respectively. For M-3, mean values of $V_{max1}{\;}and{\;}V_{max2}$ were 0.062 and 0.491 nmol/min/mg protein, and estimated values of $K_{ml}{\;}and{\;}K_{m2}$ were 0.025 and 1.216 mM. The formations of pentoxifylline and M-3 from M-1 were indentified by using several selective inhibitors of cytochrome P450 isoformes at 0.05-5 mM concentration of M-1 in human liver microsomes. For the analysis of low (0.05 mM) concentration of M-1, where the affinity was expected as low, indicated that CYPlA2 and CYP3A4 were major P450 isoforms responsible for pentoxifylline and M-3 formation. CYP3A4 and CYP2A6 appeared to be P450 isoforms responsible for M-3 formation at high (5 mM) concentration of M-1.

  • PDF

Inhibitory Potential of Bilobetin Against CYP2J2 Activities in Human Liver Microsomes

  • Wu, Zhexue;Jang, Su-Nyeong;Park, So-Young;Phuc, Nguyen Minh;Liu, Kwang-Hyeon
    • Mass Spectrometry Letters
    • /
    • v.11 no.4
    • /
    • pp.113-117
    • /
    • 2020
  • Cytochrome P450 2J2 (CYP2J2) is a member of the cytochrome P450 superfamily, and is known to be arachidonic acid epoxygenase that mediates the formation of four bioactive regioisomers of epoxyeicosatrienoic acids (EETs). CYP2J2 is also involved in the metabolism of drugs such as albendazole, astemizole, danazol, ebastine, and terfenadine. CYP2J2 is highly expressed in the heart and cancer tissues. In this study, the inhibitory potential of ten natural products against CYP2J2 activity was evaluated using human liver microsomes and tandem mass spectrometry. Among them, bilobetin, which is a kind of biflavonoid, exhibits a strong inhibitory effect against the CYP2J2-mediated astemizole O-demethylation (IC50 = 0.73 μM) and terfenadine hydroxylation (IC50 = 0.89 μM). This result suggests that bilobetin can be used as strong CYP2J2 inhibitor in drug metabolism study.

Effect of Scutellariae Radix Extract on Human CYP450 Mediated-Drug Metabolism

  • Yoo, Hye-Hyun;Lim, Sun-Young;Kim, Dong-Hyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.3
    • /
    • pp.143-146
    • /
    • 2011
  • Scutellariae Radix is widely used in the traditional herbal medicine for the treatment of fever, cough, dysentery, hepatitis and hypertension in Korea, China and Japan. In this study, we investigated the effects of 70% ethanolic extract of Scutellariae Radix (SRE) on CYP450-mediated drug metabolism in the in vitro systems using human liver microsomes and hepatocytes. The microsomal incubation assay showed that SRE inhibited the drug metabolism reactions catalyzed by CYP1A2, CYP2C8 and CYP2C9 in a dose-dependent manner. In particular, SRE was shown to strongly inhibit the metabolic activity of CYP1A2 with an $IC_{50}$ value of 4.6 ${\mu}g/mL$. When SRE was evaluated for its effect on the induction of CYP450 enzyme activities in cryopreserved human hepatocytes, SRE did not exhibit any effect.

Metabolism of YH1885 by Rat, Dog, Monkey and Human Liver S9 Fractions

  • Kim, Eun-Joo;Roh, Jung-Koo;Green, Carol
    • Biomolecules & Therapeutics
    • /
    • v.6 no.3
    • /
    • pp.283-288
    • /
    • 1998
  • YH 1885 (5,6-dimethyl -2-(4-fluorophenylamino)-4-(1-methyl -1,2,3,4-tetrahydroisoquinolin -2- yl) pyrimidine hydrochloride) was developed as an antiulcer drug. The objective of this study was to examine a comparative metabolism of YH1885 in rat, dog, monkey and human liver tissues and to determine the metabolite profiles produced by the four species. YH1885 was metabolized by liver 59 fractions from all four species. Control incubations containing 59 fraction but no cofactors, contained essentially no metabolites. Metabolism of YH1885 apparently became saturated in the concentration range studied because the % of YH 1885 metabolized decreased with increasing drug concentration for all four species. Six to nine metabolite peaks were detected in the incubations and the particular profile of metabolites varied with species. The total amount of metabolites formed by liver microsomes from human and monkey were less than microsomes from rat or dog. The major metabolite peak formed by rat liver 597actions fluted near the solvent front on the HPLC or remained at the origin in TLC, indicating that it contained one or more polar metabolites. Dog liver 59 fractions incubations contained four major metabolites that each accounted for about 15 to 20 % of the total radioactivity at the low concentration of YH1885. The metabolite profiles of YH1885 appeared to be similar in incubations with rhesus monkey and human liver 59 fraction. The amount of metabolites formed by rhesus monkey liver preparations was greater than that of human liver that contained prominent metabolite peaks with approximate relative retention time of 0.14 and 0.43.

  • PDF

In Vitro Metabolism of a New Cardioprotective Agent, KR-33028 in the Human Liver Microsomes and Cryopreserved Human Hepatocytes

  • Kim Hyojin;Yoon Yune-Jung;Kim Hyunmi;Cha Eun-Young;Lee Hye Suk;Kim Jeong-Han;Yi Kyu Yang;Lee Sunkyung;Cheon Hyae Gyeong;Yoo Sung-Eun;Lee Sang-Seop;Shin Jae-Gook;Liu Kwang-Hyeon
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1287-1292
    • /
    • 2005
  • KR-33028 (N-[4-cyano-benzo[b]thiophene-2-carbonyl]guanidine) is a new cardioprotective agent for preventing ischemia-reperfusion injury. This study was performed to identify the metabolic pathway of KR-33028 in human liver microsomes and to compare its metabolism with that of cryopreserved human hepatocytes. Human liver microsomal incubation of KR-33028 in the presence of NADPH and UDPGA resulted in the formation of four metabolites, M1, M2, M3, and M4. M1 and M2 were identified as 5-hydroxy-KR-33028 and 7-hydroxy-KR-33028, respectively, on the basis of LC/MS/MS analysis with the synthesized authentic standard. M3 and M4 were suggested to be dihydroxy-KR-33028 and hydroxy-KR-33028-glucuronide, respectively. Metabolism of KR-33028 in cryopreserved human hepatocytes resulted in the formation of M1, M2, and M4. These data show a good correlation between major metabolites formed in human liver microsomes and cryopreserved human hepatocytes. In addition, KR­33028 was found to inhibit moderately the metabolism of CYP1A2 substrates. Based on the results obtained metabolic pathway of KR-33028 is proposed.

Influence of Five Herbal Medicines on Cytochrome P450 3A4 Drug-Metabolizing Enzyme Activity (활혈거어약의 Cytochrome P450 3A4 효소활성에 미치는 영향)

  • Go, Jae-Eon;Hwang, Jin-Woo;Go, Ho-Yeon;Choi, You-Kyung;Park, Jong-Hyung;Ko, Seong-Gyu;Jun, Chan-Yong
    • The Journal of Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.104-113
    • /
    • 2008
  • Objectives: The aim of this study was to investigate the influence of five herbal medicines on cytochrome P450 (CYP) 3A4 drug-metabolizing enzymes in human liver microsomes. Methods: By using of human liver microsomes, we extracted Cnidium officinale Makino, Rhus verniciflua Stokes, Prunus persica Batsch, Corydalis remota Fisch, Carthamus tinctorius Linne, which are called Hwalhyulgeoouhyak(活血祛瘀藥). Then they were incubated and measured for relative enzyme activity under incubation conditions compared to ketoconazole, which is known as a representative inhibitor of CYP 3A4. Results: We showed that all of five traditional herbal medicines had no inhibition effect of CYP 3A4 at 10, 20, 30, 40, and 50${\mu}g/m{\ell}$ doses in human liver microsomes, although Rhus verniciflua Stokes (RVS) showed a little inhibition as about 95% enzyme activity of control. However, this result was not enough to prove that RVS has a CYP 3A4 inhibition effect. Moreover, we can't confirm that those rates have significant induction effect on CYP 3A4. Conclusions: The result of this study could support that those herbal medicines are more reliable than chemical drugs, even if this is a basic step to prove that result.

  • PDF

Cytochrome P450 2C8 and CYP3A4/5 are Involved in Chloroquine Metabolism in Human Liver Microsomes

  • Kim, Kyoung-Ah;Park, Ji-Young;Lee, Ji-Suk;Lim, Sabina
    • Archives of Pharmacal Research
    • /
    • v.26 no.8
    • /
    • pp.631-637
    • /
    • 2003
  • Chloroquine has been used for many decades in the prophylaxis and treatment of malaria. It is metabolized in humans through the N-dealkylation pathway, to desethylchloroquine (DCQ) and bisdesethylchloroquine (BDCQ), by cytochrome P450 (CYP). However, until recently, no data are available on the metabolic pathway of chloroquine. Therefore, the metabolic pathway of chloroquine was evaluated using human liver microsomes and cDNA-expressed CYPs. Chloroquine is mainly metabolized to DCQ, and its Eadie-Hofstee plots were biphasic, indicating the involvement of multiple enzymes, with apparent $K_m and V_{max}$ values of 0.21 mM and 1.02 nmol/min/mg protein 3.43 mM and 10.47 nmol/min/mg protein for high and low affinity components, respectively. Of the cDNA-expressing CYPs examined, CYP1A2, 2C8, 2C19, 2D6 and 3A4/5 exhibited significant DCQ formation. A study using chemical inhibitors showed only quercetin (a CYP2C8 inhibitor) and ketoconazole (a CYP3A4/5 inhibitor) inhibited the DCQ formation. In addition, the DCQ formation significantly correlated with the CYP3A4/5-catalyzed midazolam 1-hydroxylation (r=0.868) and CYP2C8-catalyzed paclitaxel 6$\alpha$-hydroxylation (r = 0.900). In conclusion, the results of the present study demonstrated that CYP2C8 and CYP3A4/5 are the major enzymes responsible for the chloroquine N-deethylation to DCQ in human liver microsomes.

STEREOSELECTIVE METABOLISM AND INHIBITION OF LANSOPRAZOLE ENANTIOMERS ON HUMAN LIVER CYPs.

  • Kim, Kyung-Ah;Yoon, Young-Ran;Shin, Jae-Gook
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.196-196
    • /
    • 2001
  • Stereoselective metabolism and inhibitory potential of lansoprazole enantiomers were evaluated from the incubational studies of human liver microsomes and eDNA-expressed CYP isoforms in vitro. The formation of lansoprazole sulfone from both enantiomers appeared to be catalyzed by single and low affinity enzyme. Lansoprazole 5-hydroxylation, however, appeared to be mediated by two kinetically distinct CYP enzymes.(omitted)

  • PDF