• 제목/요약/키워드: human lactoferrin protein

검색결과 19건 처리시간 0.022초

Pichia pastoris에서 Human Lactoferrin의 발현 (Expression of Human Lactoferrin in Pichia pastoris)

  • 임소용;주인선;윤동훈;성창근
    • 한국식품영양과학회지
    • /
    • 제26권4호
    • /
    • pp.669-674
    • /
    • 1997
  • 면역활성, 항균성 등의 기능성을 보여 식품첨가물로 전량 수입에 의존하여 사용되는 human lactoferrin을 진핵세포에서의 생산을 시도하였다. 우선, 항균성을 보이는 lactoferrin에 대하여 생육저해가 없는 host cell에 lactoferrin 유전자를 발현시키고자 lactoferrin에 대한 항균력을 실험한 결과 Pichia pastoris는 생육저해를 일으키지 않아 이를 lactoferrin 생산균주로 선정하였다. Pichia를 숙주로 하는 pHIL-SI expression vector에 lactoferrin 유전자를 삽입 하였을 때 genomic DNA에 유전자가 integration 되었다. 즉, transformant JY-1, JY-2는 PCR(polymerase chain reaction)과 southern blotting에 의하여 2.4Kb의 크기의 HLF(human lactoferrin) 유전자가 삽입되었음을 확인하였다. 유전자 발현을 검토한 결과 transformant JY-1는 immunoblotting에 의하여 lactoferrin 단백질 생산을 확인하였다. 배양시간에 따른 HLF의 생산성을 알아본 결과 48시간 이후에 75KDa의 HLF단백질이 분비됨을 확인하였다

  • PDF

Development of transgenic rice lines expressing the human lactoferrin gene

  • Lee, Jin-Hyoung;Kim, Il-Gi;Kim, Hyo-Sung;Shin, Kong-Sik;Suh, Seok-Cheol;Kweon, Soon-Jong;Rhim, Seong-Lyul
    • Journal of Plant Biotechnology
    • /
    • 제37권4호
    • /
    • pp.556-561
    • /
    • 2010
  • Lactoferrin is an 80-kDa iron-binding glycoprotein that is found in high concentrations in human milk. Human lactoferrin (hLF) has several beneficial biological activities including immune system modulation and antimicrobial activity. In the present study, we devolved a method of hLF expression through introducing the hLF gene construct into Oriza sativa cv. Nakdong using the Agrobacterium-mediated transformation system. The expression of the hLF gene under the control of the rice glutelin promoter was detected in the seeds of transgenic rice plants. Transformed rice plants were selected on media containing herbicide(DL-phosphinothricin) and the integration of hLF cDNA was confirmed by Southern blot analysis. The expression of the full length hLF protein from the grains of transgenic rice plants was verified by Western blot analysis. The lactoferrin expression levels in the transformed rice grains determined by enzyme-linked immunosorbant assay accounted for approximately 1.5% of total soluble protein. Taken together, these data indicate that rice grains expressing hLF can be directly incorporated into infant formula and baby food.

락토페린의 최근 연구 개발 동향 (Current Trends in Lactoferrin Research and Development)

  • 류연경;김완섭
    • Journal of Dairy Science and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.19-28
    • /
    • 2009
  • Lactoferrin was first identified 60 years ago as a "red protein" in bovine milk. Lactoferrin, one of the transferrin family proteins, is an iron-binding glycoprotein found in milk and various mucosal secretions; it is also released from activated neutrophils. Human lactoferrin has a molecular weight of 82.4 kDa and is composed of 702 or 692 amino acid residues. Bovine lactoferrin has a molecular weight of 83.1 kDa and is composed of 689 amino acid residues. Both lactoferrin and transferrin have the ability to bind two $Fe^{3+}$ ions, together with two ${CO_3}^{2-}$ ions with extremely high affinity; these proteins also have the ability to release this iron at low pH levels. The polypeptide chain in lactoferrin is folded into two globular lobes, representing the N-terminal and C-terminal halves. Both lobes have similar folding and 40% sequence identity. This protein is capable of multiple functions as described in various review papers, including antimicrobial, antiviral, antiinflammatory, anticancer, antioxidant, and cell growth-promoting activities. Lactoferrin also exhibits immunomodulating effects and plays an active role in the regulation of myelopoiesis and the inhibition of bacterial translocation.

  • PDF

락토페린 유전자도입 piggyBac 벡터에 의한 누에 형질전환 (Germ Line Transformation of the Silkworm, Bombyx mori L. with a piggyBac Vector Harboring the Human Lactoferrin Gene)

  • 김용순;손봉희;김기영;정이연;김미자;강필돈
    • 한국잠사곤충학회지
    • /
    • 제49권2호
    • /
    • pp.37-42
    • /
    • 2007
  • 락토페린 cDNA 유전자를 도입시킨 누에 형질전환 실험을 수행한 결과, 다음과 같은 결과를 얻을 수 있었다. 1. 사람 GI-101 세포주의 mRNA로부터 클로닝 된 락토페린 cDNA 유전자의 개시코돈 ATG와 종결코돈 TAA를 포함하는 open reading frame(2,136 bp) 영역을 확인하였다. 2. Sf9 배양세포의 조추출물 시료에 의한 Western blot 분석 결과, 락토페린으로 추정되는 약 80kDa의 단백질 발현을 확인하였다. 3. 누에 형질전환에 높은 전이효율과 활성을 나타내는 트랜스포존을 이용한 전이벡터 pPIGA3GFP를 개조하여 락토페린 cDNA를 삽입시킨 전이벡터 pPT-HLf를 구축하였다. 4. DNA 미량 주사법에 의한 누에 형질전환 개체의 발현 비율은 약 6.7% 정도를 나타냈다. 5. 형질전환 누에(G0) 동일한 세대간 교배 및 처리하지 않은 성충간의 역교배에 의한 차세대(G1) 개체로부터 락토페린 유전자와 동일한 크기의 2.1 kb DNA 단편을 확인 할 수 있었으며, 형질전환 G1 세대의 조추출물 시료에 의한 Western blot 분석 결과, 표준 락토페린 항체와 반응하는 약 80 kDa의 단백질 발현을 확인할 수 있었다.

인체 락토페린 생산 형질전환 고구마 개발 (Development of transgenic sweet potato producing human lactoferrin)

  • 민성란;김재화;정원중;이영복;유장렬
    • Journal of Plant Biotechnology
    • /
    • 제36권3호
    • /
    • pp.224-229
    • /
    • 2009
  • Human lactoferrin is an iron-binding glycoprotein with many biological activities, including the protection against microbial and virus infection and stimulation of the immune system. We introduced a human lactoferrin (hLf) cDNA under the control of 35S promoter into sweet potato by particle bombardment. Transgenic plants were regenerated via somatic embryogenesis. Transgenic plants were produced typical tuberous roots in soil. PCR, Southern and northern analyses confirmed that the hLf cDNA was incorporated into the plant genome and was properly expressed in plants. Western blot analysis showed that the 80 kDa full length hLf protein was produced in transgenic tuberous roots. Overall results indicated that sweet potato would be an excellent host to produce human therapeutic proteins.

국내 임상 분리주 Streptococcus pneumoniae KNIH1156으로부터 PspA 단백 항원의 정제 및 면역원성 확인 (The Purification and Immunogenicity of Pneumococcal Surface Protein (PspA) from Invasive Streptococcus pneumoniae KNIH1156 Isolated in Korea)

  • 정경석;배송미
    • 미생물학회지
    • /
    • 제38권1호
    • /
    • pp.38-44
    • /
    • 2002
  • 국내 분리 침습성 균주중선별된 S. pneumoniae KNIH1156 (type 19F)으로부터 페렴구균의 병원성 인자이며 항원학적으로 다양한 표면단백항원인 pneumococcal surface protein A (PspA)를 분리${\cdot}$정제하였다. 폐렴구균을 CDM-ET배지에서 배양하게 되면 배지내로 PspA가 방출된다는 점과 PspA가 인간의 lactoferrin에 특이적으로 결합한다는 사실을 이용하여 CDM-ET 배지에서 S. pneumoniae KNIH1156 을 배양한 후 배양액을 농축하여 lactoferrinaffinity chromatography에 통과시켜 PspA를 분리, 정제하였다. 정제 후 anti-PspA antiserum으로 PspA를 확인하여 순수분리, 정제되었음을 확인하였으며 또한 인간의 lactoferrin과의 결합능력을 유지하고 있음을 확인하였다. 순수하게 분리하여 정제된 PspA의 면역원성을 확인하기 위하여 ICR mice에 욕강주사하였을 때 $LD_{50}$$1{\times}10^{7.5}$ CFU/ml께서 $1{\times}10^{10}$ CFU/ml로 약 500배 중가함을 관찰하였다. 따라서 본 실험에서S. pneumoniae KNIH1156 으로부터 분리${\cdot}$ 정제한 PspA가 면역원성과 방어능을 가지고 있음을 확인할 수 있었다.

Lactoferrin Protects Human Mesenchymal Stem Cells from Oxidative Stress-Induced Senescence and Apoptosis

  • Park, Soon Yong;Jeong, Ae-Jin;Kim, Geun-Young;Jo, Ara;Lee, Joo Eon;Leem, Sun-Hee;Yoon, Joung-Hahn;Ye, Sang Kyu;Chung, Jin Woong
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권10호
    • /
    • pp.1877-1884
    • /
    • 2017
  • Mesenchymal stem cells (MSCs) have been suggested as a primary candidate for cell therapy applications because they have self-renewal and differentiation capabilities. Although they can be expanded in ex vivo system, clinical application of these cells is still limited because they survive poorly and undergo senescence or apoptosis when transplanted and exposed to environmental factors such as oxidative stress. Thus, reducing oxidative stress is expected to improve the efficacy of MSC therapy. The milk protein lactoferrin is a multifunctional iron-binding glycoprotein that plays various roles, including reduction of oxidative stress. Thus, we explored the effect of lactoferrin on oxidative stress-induced senescence and apoptosis of human MSCs (hMSCs). Measurement of reactive oxygen species (ROS) revealed that lactoferrin inhibited the production of hydrogen peroxide-induced intracellular ROS, suggesting lactoferrin as a good candidate as an antioxidant in hMSCs. Pretreatment of lactoferrin suppressed hydrogen peroxide-induced senescence of hMSCs. In addition, lactoferrin reduced hydrogen peroxide-induced apoptosis via inhibition of caspase-3 and Akt activation. These results demonstrate that lactoferrin can be a promising factor to protect hMSCs from oxidative stress-induced senescence and apoptosis, thus increasing the efficacy of MSC therapy.

High-yield Production of Functional Human Lactoferrin in Transgenic Cell Cultures of Siberian Ginseng(Acanthopanax senticosus)

  • Jo, Seung-Hyun;Kwon, Suk-Yoon;Park, Doo-Sang;Yang, Kyoung-Sil;Kim, Jae-Whune;Lee, Ki-Teak;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권5호
    • /
    • pp.442-448
    • /
    • 2006
  • Human lactoferrin (hLf) is an iron-binding glycoprotein that has been considered to play many biological roles in the human, including the stimulation of the immune system, antimicrobial and anti-inflammatory effects, and regulation of iron absorption. We generated transgenic Siberian ginseng (Acanthopanax senticosus) cell cultures producing a functional hLf protein using the signal peptide sequence from the endoplasmic reticulum and driven by an oxidative stress-inducible SWPA2 promoter which is highly expressed in plant cell cultures. The production of hLf increased proportionally to cell growth and showed a maximal level (up to 3.6% of total soluble protein) at the stationary phase in suspension cultures. Full-length hLf protein was identified by immunoblot analysis in transgenic cell cultures of Siberian ginseng. Recombinant hLf (rhLf) was purified from suspension cells of Siberian ginseng by ammonium sulfate precipitation, cation-exchange and gel filtration chromatography. N-terminal sequences of rhLf were identical to native hLf (nhLf). The overall monosaccharide composition of rhLf showed the presence of plant specific xylose while sialic acid is absent. Antibacterial activity of purified rhLf was higher than that of nhLf. Taken together, we anticipate that medicinal Siberian ginseng cultured cells, as demonstrated by this study, will be a biotechnologically useful source for commercial production of functional hLf not requiring further purification.

Identification of Lactoferrin as a Human Dedifferentiation Factor Through the Studies of Reptile Tissue Regeneration Mechanisms

  • Bae, Kil Soo;Kim, Sun Young;Park, Soon Yong;Jeong, Ae Jin;Lee, Hyun Hee;Lee, Jungwoon;Cho, Yee Sook;Leem, Sun-Hee;Kang, Tae-Hong;Bae, Kwang-Hee;Kim, Jae Ho;Jung, Yong Woo;Jun, Woojin;Yoon, Suk Ran;Lee, Sang-Chul;Chung, Jin Woong
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권6호
    • /
    • pp.869-878
    • /
    • 2014
  • In this study, we performed two-dimensional electrophoresis with protein extracts from lizard tails, and analyzed the protein expression profiles during the tissue regeneration to identify the dedifferentiation factor. As a result, we identified 18 protein spots among total of 292 spots, of which proteins were specifically expressed during blastema formation. We selected lactoferrin as a candidate because it is the mammalian homolog of leech-derived tryptase inhibitor, which showed the highest frequency among the 18 proteins. Lactoferrin was specifically expressed in various stem cell lines, and enhanced the efficiency of iPSC generation upto approximately 7-fold relative to the control. Furthermore, lactoferrin increased the efficiency by 2-fold without enforced expression of Klf4. These results suggest that lactoferrin may induce dedifferentiation, at least partly by increasing the expression of Klf4.

Adenoviral Vector Mediates High Expression Levels of Human Lactoferrin in the Milk of Rabbits

  • Han, Zeng-Sheng;Li, Qing-Wang;Zhang, Zhi-Ying;Yu, Yong-Sheng;Xiao, Bo;Wu, Shu-Yun;Jiang, Zhong-Liang;Zhao, Hong-Wei;Zhao, Rui;Li, Jian
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.153-159
    • /
    • 2008
  • The limitations in current technology for generating transgenic animals, such as the time and the expense, hampered its extensive use in recombinant protein production for therapeutic purpose. In this report, we present a simple and less expensive alternative by directly infusing a recombinant adenovirus vector carrying human lactoferrin cDNA into rabbit mammary glands. The milk serum was collected from the infected mammary gland 48 h post-infection and subjected to a 10% SDS-PAGE and Western blotting. An 80-kDa protein was visualized after viral vector infection. With this method, we obtained a high level of expressed human lactoferrin of up to 2.3mg/ml in the milk. Taken together, the method is useful for the transient high-level expression recombinant proteins, and the approach established here is probably one of the most economical and efficient ways for large-scale production of recombinant proteins of biopharmaceutical interest.