• Title/Summary/Keyword: human joints

Search Result 295, Processing Time 0.027 seconds

Design of a Flexible Robot Foot with Toes and Heel Joints (발가락과 뒤꿈치 조인트를 갖는 유연한 로봇 발 설계)

  • Park, Jin-Hee;Kim, Hyun-Sul;Kwon, Sang-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.446-454
    • /
    • 2011
  • In terms of the anatomy and mechanics of the human foot, a flexible robot foot with toes and heel joints is designed for a bipedal walking robot. We suggest three design considerations in determining foot design parameters which are critical for walking stability. Those include the position of the frontal toe, the stiffness of toes and heels, and the position of the ankle joint. Compared with the conventional foot with flat sale, the proposed foot is advantageous for human-like walking due to the inherent structural flexibility and the reasonable parameter values. Simulation results are provided to determine the design parameters and also show that the proposed foot enables smaller energy consumption.

HISTOPATHOLOGICAL STUDIES ON THE ARTICULAR DISC OF THE HUMAN TEMPOROMANDIBULAR JOINT BY AGING (악관절도판의 증영적 변화에 관한 병리조직학적 연구)

  • Park, Jin-Whan
    • The Journal of the Korean dental association
    • /
    • v.9 no.10
    • /
    • pp.611-615
    • /
    • 1971
  • The articular discs from temporomandibular joints of thirty men and women whose ages ranged between 20 and 70 years hve been used in this study. The articular discs of the temporomandibular joints of human postmortem material was examined individually by means of microscopic techniques. The following changes were seen: 1. With advancing age some of fibroblast was developed into chondroid cells. Which later may differentiate into true chondrocytes. 2. In young individuals the elastic fibers found only I relatively small numbers. With advancing age elastic fibers was increased in number. 3. With advancing age the arrangement of fibrous tissue are irregular and loosely separated. 4. In the discs, as well as in the fibrous tissue covering the articular surfaces, this cellular changes seems to be dependent upon mechanical influences.

  • PDF

HISTOPATHOLOGIC CHANGES OF THE CRANIOMANDIBULAR JOINT ACCORDING TO THE AMOUNT OF DISTRACTION AFTER 6 WEEKS OF DISTRACTION OSTEOGENESIS IN RABBITS (가토에서 하악골 신연 6주후 신연양에 따른 두개하악관절의 조직병리학적 변화)

  • Kim, Hyun-Ho;Kim, Su-Gwan;Lim, Sung-Chul;Chung, Hae-Man;Kim, Sang-Gon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.2
    • /
    • pp.79-85
    • /
    • 2003
  • The purpose of this study is to observe histopathologic changes in the bilateral craniomandibular joints after allowing 6 weeks of consolidation by varying the amount of distraction in rabbit mandible. Eight rabbits weighing about 2 to 3 kg were used. After corticotomy was performed on the left mandibular body between the first premolar and the second premolar region, a unilateral fixation device was placed. Then, a 7-day period was allowed without distraction of the device. The mandible was lengthened 0.5 mm/day. Corticotomy and lengthening of mandible were not performed in control group. After the completion of the lengthening process, a 6-week-consolidation period was allowed. Then, the rabbits were sacrificed, and histologic examination of the craniomandibular joints was performed. Proliferative changes were observed in the craniomandibular joints in all groups. With the increasing amount of distraction, hypertrophy of the cartilage layer became more severe, bone formed was dense and enchondral ossification was clearly shown in subchondral bone. Hypertrophy of the cartilage layer was also seen in the non-distracted side as the distracted side in the experimental group. These results indicate that when physical force is applied constantly to joints, the proliferation of articular cartilage and bone formation are present. When more than 6 weeks of consolidation period is allowed at the time of performing distraction for more than 5 mm, articular changes, especially, in the contralateral side should also be noted.

An experimental study on the human upright standing posture exposed to longitudinal vibration

  • Shin, Young-Kyun;Arif Muhammad;Inooka Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.77.2-77
    • /
    • 2002
  • Human upright standing posture in the sagittal plane is studied, when it exposed in the antero-posterior vibration. A two link inverted pendulum model is considered and described its functional behavior in terms of ankle and hip joint according to the dominant joints that provides the largest contribution to the corresponding human reactionary motion. The data is analyzed, both in the time domain and the frequency domain. Subjects behave as a non-rigid pendulum with a mass and a spring throughout the whole period of the platform motion. When vision was allowed, each segment of body shows more stabilized.

  • PDF

Design and Experiment of a miniature 413-way proportional valve for a servo-pneumatic robot hand (공압구동식 로봇손을 위한 소형 4/3-Way 비례제어밸브의 설계 및 실험)

  • 류시복;김상만;홍예선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.331-336
    • /
    • 1995
  • In this past decade, industrial robot have substituted human workers successfully in certain areas, however, the applications are limited due to the shortcoming in their mechanism and control strategies. Many researchers, therefore, have focused on improving the mechanical and sensory capabilities. Developing mult-degree-of-freedom end effectors, in other words robot hands, is one of the topics that researchers have begun to improve the limitation. A set of direct drive type servo-pneumatic finger joint has been developed for a dexterous robot hand. To control the pneumatic finger joints, a prototype 4/3-way proportional control valve has been designed and tested as a preliminary, research for the control of the pneumatic finger joints. A series of experiments have been conducted to verify the performance characteristics of the valve and the conventional proportional error contral with minor-loop compensation has been used to control the anguar position of the finger joints.

  • PDF

Design of a Humanoid Robot-hand with MEC-Joint (멕조인트를 이용한 다관절 로봇핸드 설계)

  • Lee, Sang-Mun;Lee, Kyoung-Don;Min, Heung-Ki;Noh, Tae-Sung;Kim, Sung-Tae
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • A humanoid robot hand with one thumb and two fingers has been developed. Each finger has the specially designed compact joints, called "MEC Joint", which convert the rotation of a motor to the swing motion of a pendulum. The robot hand with the MEC Joints is compact and relatively light but strong enough to grasp objects in the same manner as human being does in daily activities. In this paper the kinematic model and the torque characteristics of the MEC Joint are presented and compared with the results of the dynamic simulation and the dynamometer test. The dynamic behavior of the thumb and two fingers with MEC Joints are also presented by computer simulation.

Walking of a biped robot with compliant ankle joints (순응성 발목 관절을 갖는 두발 로보트의 보행)

  • 이건영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1157-1160
    • /
    • 1996
  • Control of a biped robot which has compliant ankle joints is dealt in this paper. Simulated version of a human ankle joint is built using springs and mechanical constraints, which gives a flexibility of joint and compliance against the touching ground. The biped robot with compliant ankle joints proposed here gives a good contact between its sole and the ground and makes foot landing soft. As a result, installing force sensors for measuring the center of gravity of the biped becomes easier. A motor to drive an ankle joint is not needed which makes legs light. However, the control problem becomes more difficult because the torque of the ankle joint to put the biped in a desired walking gait cannot be provided from the compliant ankle joint. To solve this problem, we proposed a dynamic gait modification method by adjusting the position of a hip joint. Simulation results for the mathematical model of the SD-2 biped in the Ohio State University are given to show the validity of the proposed controller.

  • PDF

Chaos Analysis of Major Joint Motions for Young Males During Walking (보행시 젊은 남성에 대한 상.하체 주요 관절 운동의 카오스 분석)

  • Park, Jung-Hong;Kim, Kwang-Hoon;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.889-895
    • /
    • 2007
  • Quantifying dynamic stability is important to assessment of falling risk or functional recovery for leg injured people. Human locomotion is complex and known to exhibit nonlinear dynamical behaviors. The purpose of this study is to quantify major joints of the body using chaos analysis during walking. Time series of the chaotic signals show how gait patterns change over time. The gait experiments were carried out for ten young males walking on a motorized treadmill. Joint motions were captured using eight video cameras, and then three dimensional kinematics of the neck and the upper and lower extremities were computed by KWON 3D motion analysis software. The correlation dimension and the largest Lyapunov exponent were calculated from the time series to quantify stabilities of the joints. This study presents a data set of nonlinear dynamic characteristics for eleven joints engaged in normal level walking.

Improved Finger Bending Angles Measurements for Accurate Interactions with Virtual Objects (가상 물체와 정확한 상호작용을 위한 개선된 손가락 굽힘각 측정)

  • Wang, Hyuk;Hwang, Sun-Uk;Lee, Yong-Gu
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.5
    • /
    • pp.323-333
    • /
    • 2008
  • Various virtual gloves have been developed for the past four decades. These gloves have sensors that can measure bending angles at finger joints and the positions as well as orientations of hands. Previous researches were mostly concentrated on utilizing different kinds of sensors. As the technology matured, more interests are given towards building virtual reality applications. Furthermore, due to the recent reduction of costs, these devices have been widely adopted. Our particular interest lies in three-dimensional applications where virtual objects are grasped and manipulated. For these applications, it is crucial to accurately measure finger joints angles for realistic object interactions with the virtual hand. With inaccurate measurements, virtual hands would penetrate inside virtual objects after they are grasped. Or alternatively, virtual objects would be grasped before hands are making any contacts with virtual objects. In this paper, we introduce new design of virtual gloves for improved finger joints measurements.

Chattering Free Sliding Mode Control of Upper-limb Rehabilitation Robot with Handling Subject and Model Uncertainties (환자와 로봇의 모델 불확도를 고려한 상지재활로봇의 채터링 없는 슬라이딩 모드 제어)

  • Khan, Abdul Manan;Yun, Deok-Won;Han, Changsoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.421-426
    • /
    • 2015
  • Need to develop human body's posture supervised robots, gave the push to researchers to think over dexterous design of exoskeleton robots. It requires to develop quantitative techniques to assess human motor function and generate the command to assist in compliance with complex human motion. Upper limb rehabilitation robots, are one of those robots. These robots are used for the rehabilitation of patients having movement disorder due to spinal or brain injuries. One aspect that must be fulfilled by these robots, is to cope with uncertainties due to different patients, without significantly degrading the performance. In this paper, we propose chattering free sliding mode control technique for this purpose. This control technique is not only able to handle matched uncertainties due to different patients but also for unmatched as well. Using this technique, patients feel active assistance as they deviate from the desired trajectory. Proposed methodology is implemented on seven degrees of freedom (DOF) upper limb rehabilitation robot. In this robot, shoulder and elbow joints are powered by electric motors while rest of the joints are kept passive. Due to these active joints, robot is able to move in sagittal plane only while abduction and adduction motion in shoulder joint is kept passive. Exoskeleton performance is evaluated experimentally by a neurologically intact subjects while varying the mass properties. Results show effectiveness of proposed control methodology for the given scenario even having 20 % uncertain parameters in system modeling.