• Title/Summary/Keyword: human hepatocellular carcinoma

Search Result 236, Processing Time 0.02 seconds

Comparative Study of Korean Mistletoe Lectin and Bee Venom on the Anti-Cancer Effect and Its Mechanisms of Action in Hepatocellular Carcinoma Cells (상기생과 봉독이 간암 세포주 Hep G2에 대해 미치는 항암 기전 비교)

  • Kim, Sung-Uk;Kim, Bo-Ram;Heo, Kyung;Lim, Seong-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.4
    • /
    • pp.845-857
    • /
    • 2009
  • Background and Objectives : Korean mistletoe lectin (Viscum album coloratum agglutinin, VCA) and bee venom (BV) have been reported to induce apoptosis in various cancer cell lines in vitro and to show antitumor activity against a variety of tumors in animal models. However, the comparative effect of VCA and BV on the anti-cancer effect and mechanisms of action has not been determined. In this study, the effect in a human hepatocellular carcinoma cell line, Hep G2 cells, was examined. Methods : Cytotoxic effects of VCA and BV on Hep G2 cells were determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay in litro. The apoptotic cell death was then confirmed by propidium iodide staining and DNA fragmentation analysis. The mechanisms of action were examined by the expression of anti-apoptotic proteins and activation of mitogen-activated protein kinases. The involvement of kinase was examined in VCA or BV-induced apoptosis by using kinase inhibitors. Results : VCA and BV killed Hep G2 cells in a time and dose-dependent manner. Treatment of Hep G2 cells with VCA activated poly (ADP-ribose) polymerase-1 (PARP-1) known as a marker of apoptosis, and mitogen-activated protein kinases signaling pathways including MAPK/ERK, p38 MAPK and JNK. BV also activated PARP-1, MAPK/ERK. and p38 MAPK but not JNK. The expression level of anti-apoptotic molecule, Bcl-X, was decreased by VCA treatment but not by BV. Finally, the phosphorylation level of ERM proteins involved in the cytoskeleton homeostasis was decreased by both stimuli. VCA-induced apoptosis was partially inhibited by in the presence of JNK and p38 inhibitor, but BV only by p38 inhibitor. Conclusions : VCA-induced apoptosis is dependent on the activation of p38 and JNK. while BV-induced apoptosis is mediated by p38 activation in Hep G2 cells.

  • PDF

The Anti-cancer Effects of Bigihwan, Daechilgithang, and Mokwhyangbinranghwan Ethanol Extracts in Human Hepatocellular Carcinoma Cells (인체 간암세포에서 비기환(肥氣丸), 대칠기탕(大七氣湯) 및 목향빈랑환(木香檳榔丸)의 항암 활성 비교)

  • Kim, So Young;Hong, Su Hyun;Choi, Sung Hyun;Cheong, JaeHun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.30 no.5
    • /
    • pp.460-467
    • /
    • 2020
  • Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers in the word. Although radiation and chemotherapy are generally effective, there are various side effects that greatly limit the effectiveness of these treatments. Therefore, traditional herbs may have potential as important resources for the discovery of liver cancer therapeutics. In this study, we selected three Korean herbal medicine formulas from the Donguibogam, namely Bigihwan (BGH), Daechilgithang (DCGT), and Mokwhyangbinranghwan (MHBRH), and evaluated their anti-cancer effects on HCC cells. According to our results of three ethanol extracts, BGH was more effective at suppressing HCC growth than DCGT or MHBRH. Furthermore, flow cytometry analysis showed that inhibition of HCC proliferation by the three extracts was associated with the induction of apoptosis and autophagy. In particular, BGH significantly increased mitochondrial impairment and showed the possibility of inducing mitophagy in comparison with the other two extracts. BGH prominently upregulated the levels of microtubule-associated protein light chain-3 which was accompanied by a decrease in the expression of anti-apoptotic Bcl-2 without altering the expression of pro-apoptotic Bax. In addition, the levels of PTEN-induced kinase 1 were also markedly increased in BGH-treated HCC cells. Moreover, autophagy blocking improved cell viability and reduced apoptosis after the three treatments, indicating that autophagy by these extracts enhances HCC cells against cytotoxicity. In conclusion, our findings show that BGH demonstrates the highest anti-cancer activity among the three formulas and inhibits the proliferation of HCC cells through autophagy induction.

Rice Bran Phytic Acid Induced Apoptosis Through Regulation of Bcl-2/Bax and p53 Genes in HepG2 Human Hepatocellular Carcinoma Cells

  • Al-Fatlawi, Atheer Abbas;Al-Fatlawi, Anees Abbas;Irshad, Md.;Zafaryab, Md.;Alam Rizvi, M. Moshahid;Ahmad, Ayaz
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3731-3736
    • /
    • 2014
  • Phytic acid (PA) has been reported to have positive nutritional benefits and prevent cancer formation. This study investigated the anticancer activity of rice bran PA against hepatocellular carcinoma (HepG2) cells. Cytotoxicty of PA (0.5 to 4mM) was examined by MTT and LDH assays after 24 and 48h treatment. Apoptotic activity was evaluated by expression analysis of apoptosis-regulatory genes [i.e. p53, Bcl-2, Bax, Caspase-3 and -9] by reverse transcriptase-PCR and DNA fragmentation assay. The results showed antioxidant activity of PA in Fe3+ reducing power assay ($p{\leq}0.03$). PA inhibited the growth of HepG2 cells in a concentration dependent manner ($p{\leq}0.04$). After 48h treatment, cell viability was recorded 84.7, 74.4, 65.6, 49.6, 36.0 and 23.8% in MTT assay and 92.6, 77.0%, 66.8%, 51.2, 40.3 and 32.3% in LDH assay at concentrations of 1, 1.5, 2.0, 2.5, 3.0, and 3.5mM, respectively. Hence, treatment of PA for 24h, recorded viability of cells 93.5, 88.6, 55.5, 34.6 and 24.4% in MTT assay and 94.2, 86.1%, 59.7%, 42.3 and 31.6%, in LDH assay at concentrations of 1, 2.2, 3.0, 3.6 and 4.0mM, respectively. PA treated HepG2 cells showed up-regulation of p53, Bax, Caspase-3 and -9, and down-regulation of Bcl-2 gene ($p{\leq}0.01$). At the $IC_{50}$ (2.49mM) of PA, the p53, Bax, Caspase-3 and-9 genes were up-regulated by 6.03, 7.37, 19.7 and 14.5 fold respectively. Also, the fragmented genomic DNA in PA treated cells provided evidence of apoptosis. Our study confirmed the biological activity of PA and demonstrated growth inhibition and induction of apoptosis in HepG2 cells with modulation of the expression of apoptosis-regulatory genes.

Berberine Induces p53-Dependent Apoptosis through Inhibition of DNA Methyltransferase3b in Hep3B Cells (Hep3B 세포에서 베르베린은 DNA methyltransferase3b 억제를 통해 p53을 발현시켜 세포사멸을 유도)

  • Kim, Dae-Yeon;Kim, Seon-Hyoung;Cheong, Hee-Tae;Ra, Chang-Six;Rhee, Ki-Jong;Jung, Bae Dong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.1
    • /
    • pp.69-77
    • /
    • 2020
  • The tumor suppressor gene, p53, is inactivated in the human hepatocellular carcinoma cells line, Hep3B. Berberine has been reported to inhibit the proliferation of cancer cells. This study examined whether apoptosis was induced in berberine-treated Hep3B cells and observed the association between apoptosis and the expression of p53 and DNA methyltransferase (DNMT). The cell viability was measured using an MTT assay. Apoptosis of Hep3B was measured using annexin V flow cytometry. Berberine-treated cells were examined for their DNMT enzymatic activity, mRNA expression, and protein synthesis. The p53 levels were examined by Western blot analysis. The berberine treatment resulted in increased Hep3B cell death and apoptosis in a time- and dose-dependent manner. The DNMT3b activity, mRNA expression, and protein levels all decreased after the berberine treatment. In contrast, the p53 protein levels increased with a concomitant decrease in DNMT3b. No change in the expression of ERK was observed, but the P-ERK levels decreased in a dose dependent manner. These results indicate that a treatment of Hep3B cells with berberine can reduce the expression of DNMT3b, leading to an increase in the tumor suppressant gene p53 and an increase in cell apoptosis. This shows that berberine can effectively suppress the proliferation of liver cancer cells.

Studies on Antitumor Effect and Synergistic Action of Natural Products with Anticancer drugs against Hepatic Tumors (생약의 간암세포에 대한 항종양효과와 항암제와의 상승작용)

  • Park, Gyeong-Sik;kim, Sung-Hoon;kim, Byung-tak
    • Journal of Haehwa Medicine
    • /
    • v.4 no.1
    • /
    • pp.211-223
    • /
    • 1995
  • The antitumor effect of 柴胡(Bupleuri Radix : BP), 茵陳(Artemisiae capillaris Herba; ACH) 및 蒲公英(Taraxaci Herba; TH) and 蒲公英 EE層(Ethyl ether layer of TH; EETH) on human hepatocytes such as Hep G2, PLC and Hep 3B, and synergistic action with the anticancer drugs, that is, mitomycin(MMC), cisplatin(CPT) and 5-fluorouracil(5-FU) were studied by the method of MTT. The results were obtained as follows: 1. $IC_{50}$ against Hep G2, PLC and Hep 3B was $15.5{\mu}g/ml$, $25.4{\mu}g/ml$ and 31.25 in MMC, $92.5{\mu}g/ml$, $50.2{\mu}g/ml$ and $62.5{\mu}g/ml$ in CPT and $125{\mu}g/ml$ in 5-FU respectively. 2. Cytotoxic effect on Hep G2 was obvious in BP-treated group, synergistic action was most effective in TH-treated group or with MMC. 3. Cytotoxic effect on Hep 3B was obvious in ACH-treated group, synergistic action was most effective in ACH-treated group or with MMC. 4. Cytotoxic effect on PLC was obvious in ACH-treated group, synergistic action was most effective in TH-treated group or with MMC. From above results it was concluded that ACH showed the best antitumor effect against PLC and Hep 3B, BP aganst Hep G2 and also synergistic effect was most effective with MMC, which indicates that it is necessary to seperate the antitumor substances in ACH.

  • PDF

Effect of Gleditsiae Spina on Hep G2 cells cytotoxicity and Apoptosis and No (조각자(皂角刺)의 간암세포주(Hep G2)에 대한 세포독성, Apoptosis 및 NO에 대한 실험)

  • Kang, Sung-Youg;Cho, Kyoung-Wha;Han, Jong-Hyun;Cho, Nam-Geun
    • The Journal of Internal Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.48-61
    • /
    • 1997
  • In this study, antineoplastic activity against human hepatocellular carcinoma cell line(Hep G2) was tested in Gleditsiae Spina. Gleditsiae Spina was extracted with water, and the cytotoxic activity was tested using a calorimetric tetrazolium assay(MTT assay), the apoptosis was tested using a DNA electrophoresis and flow cytometry. The nitric oxide production from mouse peritoneal macrophage was tested using a Griess method. Gleditsiae Spina extracts against the proliferation of Hep G2 cells not showed cytotoxicity at the concentration of less than $100{\mu}g/ml$, and Gleditsiae Spina extracts not showed the cytotoxicity of mitomycin C and the cytotoxicity of cisplatin on Hep G2 cells. Gleditsiae Spina extracts aginist the proliperation of BALB/c 3T3 cells not showed cytotoxicity, the proliperation of mouse thymocytes and splenocytes not showed cytotoxicity at the concentration of less than $100{\mu}g/ml$. Gleditsiae Spina extracts not showed nitric oxide production from mouse peritoneal macrophage in vitro. Gleditsiae Spina was administered orally for 7 days at 300mg/kg increased nitric oxide production from mouse peritoneal macrophage.

  • PDF

Regulation of Protein Expression in Mouse Liver by Inorganic Arsenic: Proteomic Analysis (무기비소에 의한 마우스 간의 단백질 발현 조절 : 단백체 분석)

  • Jin Bo-Hwan;Seong Je-Kyung;Ryu Doug-Young
    • Environmental Mutagens and Carcinogens
    • /
    • v.26 no.2
    • /
    • pp.35-40
    • /
    • 2006
  • Background: Inorganic arsenic is a human carcinogen that can target the liver, but its carcinogenic mechanisms are still unknown. Inorganic arsenic induces a spectrum of tumors including hepatocellular carcinoma in mice. Methods: Pregnant C3H mice were supplied with drinking water containing 50 ppm sodium arsenite during their pregnancy. The protein expression profile in the liver of 0.5-day-old. male offsprings exposed transplacentally to sodium arsenite was analyzed using protein 2D gel electrophoresis followed by mass spectrometry (MALDI-TOF). Results: Expression of proteins such as hydroxymethylglutaryl-CoA synthase mitochondrial precursor (HMG-CoA synthase), ${\beta}$-actin (cytoplasmic 1) and apolipoprotein A-IV precursor (Apo-AIV) were induced in mouse liver by sodium arsenite, while uricase (urate oxidase), guanine nucleotidebinding protein beta subunit 2-like 1 (RACK1) and fructose-bisphosphate aldolase B (Aldolase 2) were down-regulated. Summary: Expression of proteins that have been implicated in carcinogenesis, such as HMG-CoA, ${\beta}$-actin, and RACK1, was regulated in the liver of mice transplacentally exposed to inorganic arsenic.

  • PDF

Identification of troglitazone responsive genes: induction of RTP801 during troglitazone-induced apoptosis in Hep 3B cells

  • Kim, Jin-Oh;Kim, Ji-Young;Kwack, Mi-Hee;Hong, Su-Hyung;Kim, Moon-Kyu;Kim, Jung-Chul;Sung, Young-Kwan
    • BMB Reports
    • /
    • v.43 no.9
    • /
    • pp.599-603
    • /
    • 2010
  • Troglitazone is an anti-diabetic agent that improves hyperglycemia by reducing peripheral insulin resistance in type II diabetic patients. Troglitazone has been shown to cause growth inhibition of various normal and cancerous cells. However, the molecular mechanism by which troglitazone affects the growth of these cancer cells remains unclear. Here, we report that troglitazone treatment of Hep 3B human hepatocellular carcinoma cells resulted in dose-dependent growth inhibition. Analysis of cell cycle distribution by flow cytometry showed that the number of apoptotic cells was increased in a dose-dependent manner in response to troglitazone treatment. cDNA microarray analysis showed a number of differentially expressed genes in response to troglitazone. Among the upregulated genes, hypoxia-inducible factor 1 (HIF-1)-responsive RTP801 was induced in a dose-dependent manner. We also observed HIF-1 accumulation by immnocytochemistry after troglitazone treatment. These results strongly suggest that RTP801 might be involved in troglitazone-induced apoptosis in Hep 3B cells.

Expression of CD133, CD44, CK7, and OCT4 in Animal Cancers

  • Park, Jong-Ho;Cho, Eun-Sang;Ryu, Si-Yun;Jung, Ju-Young;Son, Hwa-Young
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.2
    • /
    • pp.109-115
    • /
    • 2013
  • Cancers are mainly sustained by a small pool of neoplastic cells, known as cancer stem cells or tumorinitiating cells. These cells possess the ability to self-renew and proliferate, and are thus able to form the tumor. In the present study cells that correspond to cancer stem cells in mammary and liver cancers in animals were identified by the expression of CD133, CD44, CK7, and OCT4 using immunochemistry. As a result, we found with CD133+ and CD44+ cancer stem cell-like phenotypes in mouse and canine hepatocellular carcinoma and canine mammary gland tumors. However, CK7+ and OCT4+ cells were not identified in animal mammary and liver cancer. CD133+ and CD44+ cells are wellknown stem cell lines and play key roles in development and metastasis in human cancer. These findings suggest that cancer stem cells are involved in animal tumorigenesis and may provide insight into mechanisms in cancer development as well as cancer diagnostics.

Optimization of Yeast Surface-Displayed cDNA Library Screening for Low Abundance Targets

  • Kim, Juhyung;Kim, Hyung Kyu;Jang, Hye Jeong;Kim, Eunkyung;Kim, Moon Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.547-553
    • /
    • 2015
  • The yeast surface-displayed cDNA library has been used to identify unknown antigens. However, when unknown target antigens show moderate-to-low abundance, some modifications are needed in the screening process. In this study, a directional random-primed cDNA library was used to increase the number of candidates for the unknown antigen. To avoid the loss of target yeast clones that express proteins at a low frequency in the cDNA library, a comprehensive monitoring system based on magnetic-activated cell sorting, fluorescence-activated cell sorting, and immunofluorescence was established, and a small number of target yeast cells was successfully enriched. These results showed that our optimized method has potential application for identifying rare unknown antigens of the human monoclonal antibody.