• Title/Summary/Keyword: human epidermal growth factor

Search Result 260, Processing Time 0.025 seconds

Tilianin Inhibits MUC5AC Expression Mediated Via Down-Regulation of EGFR-MEK-ERK-Sp1 Signaling Pathway in NCI-H292 Human Airway Cells

  • Song, Won-Yong;Song, Yong-Seok;Ryu, Hyung Won;Oh, Sei-Ryang;Hong, JinTae;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • In the human airway, mucus exists to protect the respiratory system as a primary barrier of the innate immune system. However, hyperexpressed mucus limits airflow, resulting in a decrease of lung function. Among more than 20 mucin family members, MUC5AC and MUC5B are major glycoproteins in human airway mucus. The epidermal growth factor receptor (EGFR) signaling pathway is one of the mechanisms of these mucins expression and specificity protein-1 (Sp1) transcription factor is the downstream signal of this pathway, playing pivotal roles in mucin expression. Even though there are some drugs for treating mucus hypersecretion, no drug has proven effects on humans. We found that the flavonoid tilianin regulated MUC5AC expression and also inhibited Sp1 phosphorylation. In this study, we investigated how tilianin would modulate EGFR signaling and regulate mucin production. In conclusion, tilianin inhibited MUC5AC expression mediated via modulating the EGFR-MEK-ERK-Sp1 signaling pathway in NCI-H292 human airway epithelial cells. This study may provide the basis for the novel treatment of mucus hypersecretion.

Effect of Hormone Therapy on Long-term Outcomes of Patients with Human Epidermal Growth Factor Receptor 2-and Hormone Receptor-Positive Metastatic Breast Cancer: Real World Experience in China

  • Du, Feng;Yuan, Peng;Wang, Jia-Yu;Ma, Fei;Fan, Ying;Luo, Yang;Xu, Bing-He
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.903-907
    • /
    • 2015
  • Background: Among human epidermal growth factor receptor 2 (HER2)-positive breast cancer, more than half are also hormone receptor (HR)-positive. Although HR is a predictive factor for the efficacy of hormone therapy, there are still some uncertainties in regard to the effects on patients with HR-positive and HER2-positive metastatic breast cancers due to the potential resistance to hormone therapy caused by co-expression of HR and HER2. There are no clinical trials directly comparing the efficacy of hormonal therapy with chemotherapy. Materials and Methods: To examine the real-world effect of hormone therapy on patients with HR-positive and HER2-positive metastatic breast cancers, a cross-sectional study of a representative sample of the Chinese population was conducted. The study included 113 patients who received first-line and second-line palliative treatment between 2005 and 2010 in the Cancer Institute and Hospital, Chinese Academy of Medical Science. The effect of hormone therapy on overall survival (OS) was studied. Results: The patients who received hormone therapy (n=51) had better overall survival in contrast to those who received chemotherapy with anti-HER2 therapy (n=62) in first- or second-line treatment. The difference was of borderline statistical significance (51.8m vs 31.9m, p=0.065). In addition, the effect of hormone therapy did not differ significantly with other prognostic factors, including age (${\leq}50$ years or >50 years), disease free survival (${\geq}2$ years or < 2 years) and site of metastasis (visceral or bone/soft tissue). On multivariate analysis, administration of hormone therapy was associated with a trend toward a favorable prognosis (p=0.148, HR=0.693, 95%CI 0.422-1.139). Age more than 50 years was the sole independent harmful prognostic factor (p<0.001, HR=2.797, 95%CI 1.676-4.668). Conclusions: Our data suggest that hormonel therapy may improve outcomes of the patients with ER-positive and HER2-positive metastatic breast cancer.

Risk assessment and evaluation of epidermal growth factor (EGF) transgenic soybean: responses of Cyprinus carpio fed on EGF transgenic soybean

  • Oh, Sung-Dug;Min, Seok-Ki;Kim, Jae Kwang;Park, Jung-Ho;Kim, Chang-Gi;Park, Soo Yun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.815-827
    • /
    • 2020
  • The epidermal growth factor (EGF) transgenic soybean was developed and biosynthesis of human epidermal growth factor (hEGF) in soybean seeds was confirmed. Also, EGF transgenic soybean were found to contain a herbicide resistance selectable marker by introduction of phosphinothricin acetyltransferase (PAT) gene from the Streptomyces hygroscopicus. For biosafety assessment, the EGF transgenic soybean expressing the EGF biosynthesis gene EGF and herbicide resistant gene PAT was tested to determine effects on survival of Cyprinus carpio, commonly used as a model organism in ecotoxicological studies. C. carpio was fed 100% ground soybean suspension, EGF soybean or non-genetically modified (GM) counterpart soybean (Gwangan). Gene expression of EGF soybean was confirmed by PCR and ELISA to have EGF/PAT. Feeding test showed that no significant differences in cumulative immobility or abnormal response between C. carpio samples fed on EGF soybean and non-GM counterpart soybean. The 48 h-EC50 values of the EGF and non-GM soybean were 1,688 mg·L-1 (95% confidence limits: 1,585 - 1,798 mg·L-1) and 1,575 mg·L-1 (95% confidence limits: 1,433 - 1,731 mg·L-1), respectively. The soybean NOEC (no observed effect concentration) value for C. carpio was suggested to be 625 mg·L-1. We concluded that there was no significant difference in toxicity for non-target organisms (C. carpio) between the EGF soybean and non-GM counterparts.

Large-scale purification and single-dose oral-toxicity study of human thioredoxin and epidermal growth factor introduced into two different genetically modified soybean varieties

  • Jung-Ho, Park
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.1003-1013
    • /
    • 2021
  • Thioredoxin (TRX) protein is an antioxidant responsible for reducing other proteins by exchanging cysteine thiol-disulfide and is also known for its anti-allergic and anti-aging properties. On the other hand, epidermal growth factor (EGF) is an important material used in the cosmetics industry and an essential protein necessary for dermal wound healing facilitated by the proliferation and migration of keratinocytes. EGF also assists in the formation of granulation tissues and stimulates the motility of fibroblasts. Hence, genetically modified soybeans were developed to overexpress these industrially important proteins for mass production. A single-dose oral-toxicity-based study was conducted to evaluate the potential toxic effects of TRX and EGF proteins, as safety assessments are necessary for the commercial use of seed-specific protein-expressing transgenic soybeans. To achieve this rationale, TRX and EGF proteins were mass purified from recombinant E. coli. The single-dose oral-toxicity tests of the TRX and EGF proteins were carried out in six-week old male and female Institute of Cancer Research (ICR) mice. The initial evaluation of the single-dose TRF and EGF treatments was based on monitoring the toxicity signatures and mortality rates among the mice, and the resultant mortality rates did not show any specific clinical symptoms related to the proteins. Furthermore, no significant differences were observed in the weights between the treatment and control groups of male and female ICR mice. After 14 days of treatment, no differences were observed in the autopsy reports between the various treatment and control groups. These results suggest that the minimum lethal dose of TRX and EGF proteins is higher than the allowed 2,000 mg·kg-1 limit.

Accelerated Wound Healing by ]Recombinant Human Basic Fibroblast Growth Factor in Healing-impaired Animal Models

  • Kang, Soo-Hyung;Oh, Tae-Young;Cho, Hyun;Ahn, Byoung-Ok;Kim,Won-Bae
    • Biomolecules & Therapeutics
    • /
    • v.7 no.1
    • /
    • pp.7-13
    • /
    • 1999
  • The stimulatory effect of recombinant human basic fibroblast growth factor (bFGF) on wound healing was evaluated in healing-impaired animal models. Full-thickness wounds were made in prednisolone-treated mice, streptozotocin (STZ)-induced diabetic rats and mitomycin C (MMC)-treated rats. Saline or bFGF at a dose of 1, 5, or $25\mu\textrm{g}$ per wound was applied to the open wound once a day for three to five days. The degree of wound healing was assessed using wound size and histological parameters such as degree of epidermal and dermal regeneration. Local application of bFGF accelerated wound closure significantly in a dose-dependent manner in all healing-impaired wounds (p<0.05). The wound healing effect of bFGF was further confirmed by histological examination in MMC-treated rats. Epidermal and dermal regeneration were enhanced in bFGF-treated wounds with a dose-related response. Dermal regeneration parameters such as collagen matrix formation and angiogenesis were significantly increased in $5\mu\textrm{g}$, or $\25mu\textrm{g}$ of bFGF-treated wounds when compared to saline-treated wounds (p<0.05). pectin immunostaining on day 8 for vascular endothelium showed an increased number of neovessels in bFGF-treated wounds. These results suggest that topical application of bFGF has beneficial effects on wound healing by angiogenesis and granulation tissue formation in healing-impaired wounds.

  • PDF

Preparation of Recombinant Human Epidermal Growth Factor by Hydroxylamine Cleavage (하이드록실아민 절단을 이용한 재조합 인간 상피세포 성장인자의 제조)

  • Kim, Sun-Ho;Lee, Woo-Yiel
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.542-549
    • /
    • 2021
  • The purpose of this study was to provide an economical and easy preparation method for recombinant human epidermal growth factor (rhEGF) without the need for an expensive enzyme to cleave the fusion part. However, the N-terminal fusion part is still useful for affinity chromatography. The hEGF is an important hormone in cell growth and proliferation in humans, and many studies on the expression and purification of this protein have been reported. In the present study, the hEGF gene was designed to be optimized with the E. coli codon usage preference and to contain Asn-Gly at the N-terminus of the protein. The gene was inserted into pRSET_A, an E. coli expression vector, and transformed into E. coli BL21 (DE3). The recombinant fusion protein was successfully co-expressed with pG-Tf2, a chaperone vector, in E. coli and purified by Ni-NTA column chromatography. The rhEGF was then released by hydroxylamine treatment and confirmed by SDS-PAGE. ELISA analysis showed that the activity of the free rhEGF was more than 92% similar to that of commercial EGF. The biological activity of the rhEGF was confirmed by a cell proliferation test with human skin fibroblasts.

An Integrated Process for the Separation and Purification of Biologically Active Proteins from Human Urine (인뇨로부터 유용단백질의 통합 분리정제 공정)

  • 김기용;정광회문흥모
    • KSBB Journal
    • /
    • v.8 no.3
    • /
    • pp.287-294
    • /
    • 1993
  • For the purpose of combining the purification processes for several biologically active proteins form human urine, an efficient integrated fractionation procedure has been investigated. The procedure was started by concentration with ultrafiltration and pH precipitation followed by a selectable combination of chromatography on gel filtration, adsorption, ion exchanger, affinity, and reverse phase column. By this process, the purified urokinase, epidermal growth factor and albumin migrated as a single band on SDS-polyacrylamide gel electrophoresis and were fully active. The recoveries of these purified proteins were 48%, 17%, and 46%, respectively.

  • PDF

Development of Dermal Transduction Epidermal Growth Factor (EGF) Using A Skin Penetrating Functional Peptide (피부투과 기능성 펩타이드를 이용한 경피투과성 상피세포성장인자의 개발)

  • Kang, Jin Sun;La, Ha Na;Bak, Sun Uk;Eom, Hyo Jung;Lee, Byung Kyu;Shin, Hee Je
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.175-184
    • /
    • 2019
  • The epidermal growth factor (EGF) has a intrinsic function of inducing growth and proliferation of cells through interacting with cell membrane receptors in human epidermis and dermis layer. These functions of EGF are used as a main ingredient for wound healing medicines and anti-aging cosmetics. As a cosmetic ingredient, the EGF has a problem in exhibiting its natural efficacy due to the lack of the ability to penetrate through the stratum corneum, which is known as the skin barrier. In this study, a recombinant human epidermal growth factor ($MTD_{151}-EGF$) fused with the macromolecule transduction domain $(MTD)_{151}$ with the skin penetration ability was developed to improve the skin penetration efficiency of the EGF. Expression of $MTD_{151}-EGF$ was performed in E. coli transformed with a vector encoding the $MTD_{151}-EGF$ gene and then purified. The purified $MTD_{151}-EGF$ was evaluated using cell proliferation assay, cytotoxicity test and skin penetration test by franz diffusion cell assay and artificial skin. Cell proliferation activity of $MTD_{151}-EGF$ purified to high purity of 99% or above was equivalent to the EGF or better, and cytotoxicity was not observed. In addition, the $MTD_{151}-EGF$ showed an excellent penetration efficiency compared to the EGF in the skin penetration test with EGF and $MTD_{151}-EGF$ labeled by FITC in an artificial skin penetration model. Based on the quantitative analysis of the penetrating substance using franz diffusion cell assay, the amount of penetration was about 16 times more than that of EGF. These results can be regarded as an effective alternative to improve the existing physical transdermal penetration method related to the use of various active ingredients for cosmetics.

Fertility and Reproductive & Developmental Toxicity Study on Recombinant Human Epidermal Growth Factor (rhEGF, DWP401) in Rats (재조합 인간상피세포 성장인자(rhEGF, DWP401)가 랫드의 수태능, 태자와 신생자 발달 및 모체기능에 미치는 영향)

  • 박귀례;한순영;신재호;이유미;김판기
    • YAKHAK HOEJI
    • /
    • v.45 no.2
    • /
    • pp.190-204
    • /
    • 2001
  • This study was conducted to investigate for its effects on reproductive and developmental toxicity of recombinant human epidermal growth factor (rhEGF) in Sprague-Dawley rats. Male rats were administered rhEGF at doses of 1, 10, 100, and 1000$\mu$g/kg/day, respective1y, by subcutaneous injection from 63 days before and throughout to mating period until the day before sacrifice. Female rats were administered rhEGF at the same doses from 14 days before mating to day 20 of gestation or to day 21 of lactation. We examined the male and female fertility indices and maternal toxicity of F0 parental animals. Also, we examined the external, visceral, or skeletal malformation of fetuses, growth and development, behavior, and/or reproductive performance of F1 animals. At the highest dose (1,000 $\mu$g/kg), the mean body weights of F0 animals were significantly increased in males and females at 3 or 2 weeks after treatment, respective1y. No clinical signs and food intakes were observed at any time during the experimental period by rhEGF treatment. In autopsy examination, the relative and absolute liver weights significantly increased in both sexes of 1,000 $\mu$g/kg. At the highest dose (1,000 $\mu$g/kg), there was a statistically significant increase of pregnancy period and the number of dead fetuses. Moreover, significant increase of mean fetal body weight and decrease of number of live fetuses, which related to the difficult dilivery were observed in highest dose group. In Fl examination, no adverse effects on external, visceral, and skeletal malformation, physical and functional development, behavior or reproductive ability of Fl animals were observed in any group. Also, there was no significant difference between control and treated groups in copulation or fertility indices of Fl animals. These results indicate that rhEGF had no adverse effect on fertility and reproductive ability of Sprague-Dawley rats.

  • PDF

Biochemical Characterization of Adriamycin-Resistance in PC-14 Human Lung Adenocarcinoma Cell Line

  • Yi, Jae-Youn;Hong, Weon-Seon;Son, Young-Sook
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.66-72
    • /
    • 2001
  • To investigate the mechanism of adriamycin (ADM) resistance in the ADM resistant subline PC-14/ADM, we examined the expressions of p-glycoprotein (P-gp), topoisomerase I (Topo I) and II (Topo II), glutathione-S-transferases (GSTs), tissue transglutaminase (t-TG), epidermal growth factor receptor (EGFR), and E-cadherin and the activity of superoxide dismutase (SOD) in PC-14 and PC-14/ADM cells. There was no change in the cellular levels of P-gp, Topo I, Topo II, and the two isoforms of GSTs. However, SOD activity in PC-14/ADM cells was 2.38 fold higher than that in PC-14 cells. A marked induction of the t-TG expression was also observed in PC-14/ADM cells. In addition to those changes, expressions of EGFR and E-cadherin were down regulated in PC-14/ADM cells. Therefore, molecular modifications such as an increase in SOD activity, induction of the t-TG expression, and down regulation of EGFR and E-cadherin expressions may play important roles in PC-14/ADM cells during the development of ADM resistance.

  • PDF