• 제목/요약/키워드: human carcinoma cells

검색결과 868건 처리시간 0.031초

Epigallocatechin gallate의 인체 피부흑색종세포와 인체 구강유상피암종세포에 대한 성장억제효과 (The Growth Inhibitory Effects of Epigallocatechin Gallate Against Human Skin Melanoma Cells and Human Oral Epitheloid Carcinoma Cells)

  • 한두석;박승택;백승화
    • 한국환경성돌연변이발암원학회지
    • /
    • 제18권2호
    • /
    • pp.98-103
    • /
    • 1998
  • Epigallocatechin gallate (EGCG) was reported to exert weak cytotoxicity against normal healthy cells such as C3H10T1/2 cells, but profound inhibitory effects on the initiation or promotion stage of chemical carcinogenesis in mammary gland, blood and mouse skin. This study was carried out to develop antitumor agents with weak side effects and strong antitumor activity. Human skin melanoma cells (HBT 69) and human oral epitheloid carcinoma cells (OCL 17) were cultured in RPMI-1640 media containing 10% fetal bovine serum, antibiotic, and fungizone. After incubation for 24 hrs, the cells were treated with various amounts of (EGCG) for 48 hrs. The growth inhibitory effects of EGCG in human oral epitheloid carcinoma cells were evaluated by the 3- (4,5-djmethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), neutral red (NR), and sulforhodamine B protein (SRB) assays of colorimetric methods. The light microscopic study was also carried out to observe morphological changes of the treated cells. These results obtained were as follows; 1. Significantly inhibitory effects of EGCG against cultured human oral epithelioid carcinoma cells. 2. Significantly inhibitory effects against cultured human skin melanoma cells treated with 50 $\mu$M EGCG, but decreased inhibitory effects in 100 $\mu$M EGCG. 3. Degenerative changes against cultured human oral epitheloid carcinoma cells. 4. Degenerative changes against human skin melanoma cells treated with 50 UM EGCG, but recovered degenerative changes in 100 $\mu$M EGCG.

  • PDF

Cytotoxic Effect of Syringic Acid on Human Oral Epithelioid Carcinoma Cells

  • Lee Joo-Hyun;Han Du-Suk;Jekal Seung-Joo;Lee Jae-Hyung;Kim Chong-Ho;Yoo Min;Park Seung-Taeck
    • 대한의생명과학회지
    • /
    • 제11권3호
    • /
    • pp.337-341
    • /
    • 2005
  • This study was undertaken to clerify the cytotoxic effect of syringic acid by colorimetric assay on human cancer cells. For the evaluation of cytotoxicity of syringic acid, the cell viability and cell adhesion activity of syringic acid on cancer cells, human oral epithelioid carcinoma cells were determined using by colorimetric assays such as MTT (3-[4,5­dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay and XTT (2,3-bis-[2-methoxy-4-nitro-5-sulfophenyl]­2H-tetrazolium-5-caboxanilide) assay, respectively after human oral epithelioid carcinoma cells were treated with syringic acid for 48 hours. In this study, the cell viability of syringic acid on human oral epithelioid carcinoma cells showed a significant decrease by MTT assay compared with control, and also, the cell adhesion activity by XTT assay was decreased significantly in these cells after cells were treated with various concentrations of syringic acid for 48 hours. $MTT_{50}\;and\;XTT_{50}\;were\;282.3\;{\mu}M\;and\;418.8{\mu}M$ syringic acid, respectively. These results suggest that syringic acid shows midcytotoxic effect on human oral epithelioid carcinoma cells by the decreasement of the cell viability and the cell adehision activity assessed by colorimetric assay in these cultures.

  • PDF

한국산 생약으로부터 항암물질의 개발(제4보) 소엽 부탄올 가용분획의 항암활성 (Development of Anticancer Agents from Korean Medicinal Plants (Part 4). Antitumor Activity of the Butanol Soluble Fraction of Perilla frutescens)

  • 최규은;곽정숙;김영옥;백승화;한두석
    • Toxicological Research
    • /
    • 제13권4호
    • /
    • pp.311-316
    • /
    • 1997
  • This study was carried out to develop antitumor effect of the n-butanol soluble fraction of Perilla frutescens on (KB cells) human oral epitheloid carcinoma cells. The cytotoxictty of methanollc extract of Perilla frutescens on KB cells was evaluated by 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide(MTT) assay. The antitumor activity of various fractions obtained from n-butanol soluble fraction of Perilla frutescens was evaluated in human oral epithelold carcinoma cells. The antitumor acavity of the n-butanol soluble fraction on human oral epitheloid carcinoma cells was evaluated by MTT assay of colorimetric method. The light microscopic study was carried out to observe morphological changes of cultured human oral epitheloid carcinoma cells. These results were obtained as follows; 1. The fractions 1,2 and 3 of the n-butanol soluble fraction of Perilla frutescens were shown significant antitumor activities. 2. The number of human oral epitheloid carcinoma cells were decreased and tend to form cell cluster by treatment with fractions 1,2,3 and 4 of the n-butanol soluble fraction of Perilla frutescens. 3. The fraction 1 of the n-butanol soluble fraction of Perllla frutescens showed the highest antitumor activity on Perilla frutescens. It has been selected as a lead fraction for further examinations.

  • PDF

톳 에탄올 추출물에 의한 HT29 결장암 세포의 ROS 의존적 세포사멸 유도 (Induction of ROS-dependent apoptosis by ethanol extract of Hizikia fusiforme in HT29 colon carcinoma cells)

  • 홍수현;최영현
    • 한국해양바이오학회지
    • /
    • 제14권2호
    • /
    • pp.93-101
    • /
    • 2022
  • Hizikia fusiforme, a type of brown algae, is widely used in Asian cuisine. It has been reported to have various pharmacological effects. In this study, the effects of the ethanol extract from H. fusiforme (EAHF) on the proliferation of human colon carcinoma cells were investigated. The effect on the survival of human hepatocarcinoma and colon carcinoma cells was examined, and results revealed that the anti-proliferative effects of EAHF were higher in colon carcinoma cells than in hepatocarcinoma cells. The inhibition of proliferation of HT29 colon carcinoma cells by EAHF treatment was closely related to the induction of apoptosis. EAHF treatment also increased caspase activity and poly(ADP-ribose) polymerase degradation, induced mitochondrial dysfunction, altered Bcl-2 family protein expression, and increased the rate of cytochrome c released from the mitochondria into the cytoplasm. Furthermore, the production of reactive oxygen species (ROS) was markedly stimulated by EAHF treatment, and when ROS production was blocked, EAHF-induced cytotoxicity was significantly attenuated. These results indicate that the anticancer activity of EAHF in HT29 colon carcinoma cells was induced by ROS-dependent mitochondrial impairment. While EAHF exhibited potent anticancer activity in colon carcinoma cells in this study, further studies on the active components of EAHF and their efficacy should be performed.

Role of Integrin-Linked Kinase in Multi-drug Resistance of Human Gastric Carcinoma SGC7901/DDP Cells

  • Song, Wei;Jiang, Rui;Zhao, Chun-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5619-5625
    • /
    • 2012
  • Gastric carcinoma is a leading cause of cancer death in the world and multi-drug resistance (MDR) is an essential aspect of gastric carcinoma chemotherapy failure. Recent studies have shown that integrin-linked kinase (ILK) is involved in metastasis of human tumors, expression silencing of ILK inhibiting the metastasis of several types of cultured human cancer cells. However, the role and potential mechanism of ILK to reverse the multi-drug resistance in human gastric carcinoma is not fully clear. In this report, we focused on roles of expression silencing of ILK in multi-drug resistance reversal of human gastric carcinoma SGC7901/DDP cells, including increased drug sensitivity to cisplatin, cell apoptosis rates, and intracellular accumulation of Rhodamine-123, and decreased mRNA and protein expression of multi-drug resistance gene (MDR1), multi-drug resistance-associated protein (MRP1), excision repair cross-complementing gene 1 (ERCC1), glutathione S-transferase -${\pi}$ (GST-${\pi}$) and RhoE, and transcriptional activation of AP-1 and NF-${\kappa}B$ in ILK silenced SGC7901/DDP cells. We also found that there was a decreased level of p-Akt and p-ERK. The results indicated that ILK might be used as a potential therapeutic strategy to combat multi-drug resistance through blocking PI3K-Akt and MAPK-ERK pathways in human gastric carcinoma.

방사선에 의한 암세포주 특이적 유전자 발현 양상 (Cell-type-specific Gene Expression Patterns in Human Carcinoma Cells followed by Irradiation)

  • 박지윤;김진규;채영규
    • 환경생물
    • /
    • 제23권2호
    • /
    • pp.152-156
    • /
    • 2005
  • Ionizing radiation is a well- known therapy factor for human carcinoma cells. Genotoxic stress mediates cell cycle control, transcription and cellular signaling. In this work, we have used a microarray hybridization approach to characterize the cell type-specific transcriptional response of human carcinoma MCF-7 and HeLa cell line to $\gamma-radiation$, such as 4Gy 4hr. We found that exposure to $\gamma-ray$ alters by at least a $log_2$ factor of 1.0 the expression of known genes. Of the 27 genes affected by irradiation, 11 are down- regulated in MCF-7 cells and 2 genes induced by radiation,15 are repressed in HeLa cells. Many genes were involved in known damage- response pathways for cell cycling, transcription factor and cellular signaling response. However, in MCF-7 cells, we observed gene expression pattern in chromatin, apoptosis, stress, differentiation, cytokine, metabolism, ribosome and calcium. In HeLa cells, it showed clearly the expression changes in adhesion and migration, lysosome, brain, genome instability and translation. These insights reveal new therapy directions for studying the human carcinoma cell response to radiation.

자궁경부암세포에 대한 천화분(天花粉)의 성장억제 및 세포사멸효과 (Growth Inhibition and Apoptosis Induction of Trichosanthis Radix Extract on Human Uterine Cervical Carcinoma Cells)

  • 임은미;이현희
    • 대한한방부인과학회지
    • /
    • 제18권3호
    • /
    • pp.77-91
    • /
    • 2005
  • Purpose : Trichosanthis Radix is traditional medical herb which has been shown to inhibit tumor cell proliferation. In this study, the effects of Trichosanthis Radix extract were investigated on inducing growth inhibition and apoptosis of human uterine cervical carcinoma cells. Methods : Human uterine cervical carcinoma cells line, ME-180, was used for the study. The cells were treated with varying concentrations of Trichosanthis Radix extract. Cell growth and inhibitory rate were measured by MTT assay. Apoptosis induction was detected by fluorescence microscopy, DNA ladder formation and flow cytometry. Results : Trichosanthis Radix extract inhibited the growth of human uterine cervical carcinoma cells in a dose-dependent manner. It induced ME-180 cells to undergo apoptosis including fragmented nuclei and nucleosome-sized DNA fragmentation. Flow cytometric analysis showed the increasing rate of apoptotic cells by Trichosanthis Radix extract. Reduction of mitochondrial membrane potential and increase in caspase-3 activity and were found in ME-180 cells treated with Trichosanthis Radix extract. Conclusion : Our data suggest that Trichosanthis Radix extract inhibit the growth and proliferation of ME-180 cells by apoptotic induction and facilitates its activity via caspase-3 activation initiated by depolarization of mitochondria.

  • PDF

Influence of Ribosomal Protein L39-L in the Drug Resistance Mechanisms of Lacrimal Gland Adenoid Cystic Carcinoma Cells

  • Ye, Qing;Ding, Shao-Feng;Wang, Zhi-An;Feng, Jie;Tan, Wen-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권12호
    • /
    • pp.4995-5000
    • /
    • 2014
  • Background: Cancer constitutes a key pressure on public health regardless of the economy state in different countries. As a kind of highly malignant epithelial tumor, lacrimal gland adenoid cystic carcinoma can occur in any part of the body, such as salivary gland, submandibular gland, trachea, lung, breast, skin and lacrimal gland. Chemotherapy is one of the key treatment techniques, but drug resistance, especially MDR, seriously blunts its effects. As an element of the 60S large ribosomal subunit, the ribosomal protein L39-L gene appears to be documented specifically in the human testis and many human cancer samples of different origins. Materials and Methods: Total RNA of cultured drug-resistant and susceptible lacrimal gland adenoid cystic carcinoma cells was seperated, and real time quantitative RT-PCR were used to reveal transcription differences between amycin resistant and susceptible strains of lacrimal gland adenoid cystic carcinoma cells. Viability assays were used to present the amycin resistance difference in a RPL39-L transfected lacrimal gland adenoid cystic carcinoma cell line as compared to control vector and null-transfected lacrimal gland adenoid cystic carcinoma cell lines. Results: The ribosomal protein L39-L transcription level was 6.5-fold higher in the drug-resistant human lacrimal gland adenoid cystic carcinoma cell line than in the susceptible cell line by quantitative RT-PCR analysis. The ribosomal protein L39-L transfected cells revealed enhanced drug resistance compared to plasmid vector-transfected or null-transfected cells as determined by methyl tritiated thymidine (3H-TdR) incorporation. Conclusions: The ribosomal protein L39-L gene could possibly have influence on the drug resistance mechanism of lacrimal gland adenoid cystic carcinoma cells.

Induction of Apoptosis and Transient Increase of Phosphorylated MAPKs by Diallyl Disulfide Treatment in Human Nasopharyngeal Carcinoma CNE2 Cells

  • Zhang, Yi Wei;Wen, Jun;Xiao, Jian Bo;Talbot, Simon G.;Li, Gloria C.;Xu, Ming
    • Archives of Pharmacal Research
    • /
    • 제29권12호
    • /
    • pp.1125-1131
    • /
    • 2006
  • This study was undertaken to elucidate the effect of diallyl disulfide (DADS), an oil-soluble organosulfur compound found in garlic, in suppressing human nasopharyngeal carcinoma cells. A potent increase (of at least 9-fold) in apoptotic cells has accompanied 1) a decrease in cell viability, 2) a increase of the fraction of S-phase cells by up to 63.8%, and 3) a transient increase of the phospho-p38 and phospho-p42/44 (phosphorylated p38 MAPK and phosphorylated p42/44 MAPK) in a time-and concentration-dependent manner. These results indicate that DADS can induce apoptosis in human nasopharyngeal carcinoma cells via, at least partly, S-phase block of the cell cycle, related to a rise in MAPK phosphorylation.

Arctigenin induces caspase-dependent apoptosis in FaDu human pharyngeal carcinoma cells

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Lim, HyangI;Seo, Jeong-Yeon;Park, Jong-Hyun;Chun, Hong Sung;Yu, Sun-Kyoung;Kim, Heung-Joong;Kim, Chun Sung;Kim, Do Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권6호
    • /
    • pp.447-456
    • /
    • 2022
  • The present study was carried out to investigate the effect of Arctigenin on cell growth and the mechanism of cell death elicited by Arctigenin were examined in FaDu human pharyngeal carcinoma cells. To determine the apoptotic activity of Arctigenin in FaDu human pharyngeal carcinoma cells, cell viability assay, DAPI staining, caspase activation analysis, and immunoblotting were performed. Arctigenin inhibited the growth of cells in a dose-dependent manner and induced nuclear condensation and fragmentation. Arctigenin-treated cells showed caspase-3/7 activation and increased apoptosis versus control cells. FasL, a death ligand associated with extrinsic apoptotic signaling pathways, was up-regulated by Arctigenin treatment. Moreover, caspase-8, a part of the extrinsic apoptotic pathway, was activated by Arctigenin treatments. Expressions of anti-apoptotic factors such as Bcl-2 and Bcl-xL, components of the mitochondria-dependent intrinsic apoptosis pathway, significantly decreased following Arctigenin treatment. The expressions of pro-apoptotic factors such as BAX, BAD and caspase-9, and tumor suppressor -53 increased by Arctigenin treatments. In addition, Arctigenin activated caspase-3 and poly (ADP-ribose) polymerase (PARP) induced cell death. Arctigenin also inhibited the proliferation of FaDu cells by the suppression of p38, NF-κB, and Akt signaling pathways. These results suggest that Arctigenin may inhibit cell proliferation and induce apoptotic cell death in FaDu human pharyngeal carcinoma cells through both the mitochondria-mediated intrinsic pathway and the death receptor-mediated extrinsic pathway.