• Title/Summary/Keyword: human activity

Search Result 7,771, Processing Time 0.046 seconds

Apoptosis-Inducing Activity of HPLC Fraction from Voacanga globosa (Blanco) Merr. on the Human Colon Carcinoma Cell Line, HCT116

  • Acebedo, Alvin Resultay;Amor, Evangeline Cancio;Jacinto, Sonia Donaldo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.617-622
    • /
    • 2014
  • Voacanga globosa (Blanco), a plant endemic to the Philippines, is traditionally used especially by indigenous people of Bataan in the treatment of ulcers, wounds and tumorous growths. This study aimed to provide scientific evidence to therapeutic properties by determining cytotoxic and pro-apoptotic activity of HPLC fractions from leaves on HCT116 human colon carcinoma and A549 human lung carcinoma cell lines. Ethanolic extraction was performed on V globosa leaves followed by hexane and ethyl acetate partitioning. Silica gel column chromatography and high performance liquid chromatography (HPLC) produced MP1, MP2 and MP3 fractions. Cytotoxic activity of the fractions was determined through MTT assay against the cancer cell lines HCT116 and A549 and the non-cancer AA8 Chinese hamster ovarian cell line. Pro-apoptotic activities of the most active fractions were further assessed through DAPI staining, TUNEL assay and JC-1 mitochondrial membrane potential assay with HCT116 cells. While the MPI fraction exerted no significant activity against all cell lines tested, MP2 and MP3 fractions demonstrated high toxicity against HCT116 and A549 cells. The MP3 fraction induced formation of apoptotic bodies, condensed DNA and other morphological changes consistent with apoptosis of HCT116 cells and TUNEL assay showed significant increase in DNA fragmentation over time. In these cells, the MP3 fraction also induced mitochondrial membrane destabilization, which is generally associated with the beginning of apoptosis. Phytochemical analysis demonstrated the presence only of saponins and terpenoids in the MP3 fraction. The results indicate that the MP3 fraction exerts cytotoxic activity on HCT116 cells via induction of apoptosis triggered by loss of mitochondrial membrane potential crucial for cell survival.

The Effects on Antimicrobial and Anticarcinogenic Activity of Momordica Charantia L. (메탄올로 추출한 여주 분획성분의 항균 및 항발암 효과)

  • 배송자
    • Journal of Nutrition and Health
    • /
    • v.35 no.8
    • /
    • pp.880-885
    • /
    • 2002
  • This study was performed to determine the antimicrobial and anticarcinogenic activities of the Momordica charantia L. (MC) on several microorganisms and human cancer cell lines. In the paper disk test, its antimicrobial activity was increased in proportion to its concentration. Among the various solvent fractions of Momordica charantia L., the ethylether partition layer (MCMEE) showed the strongest antimicrobial activity. Also, the ethylacetate partition layer (MCMEA) and the butanol partition layer (MCMB) showed antimicrobial activity. We also determined the cytotoxicity and chemopreventive effect of Momordica charantia L. extract and fractions on human cancer cells. The experiment was conducted to determine the cytotoxicity of Momordica charantia L. partition layers on HepG2, HeLa and MCF-7 cells by MTT assay. Among the various partition layers of Momordica charantia L., MCMEE and MCMEA showed strong cytotoxic effects on all cancer cell lines. The chemopreventive effect of the quinone reductase induced activities of HepG2 cell, the hexane partition layer (MCMH) at a dose of 50 $\mu\textrm{g}$/mL was 3.62 times more effective compared with the control values of 1.0. Therefore, based on these studies, Momordica charantia L. may be developed into a potentially useful cancer chemopreventive agent.

Effects of Vaniltic Acid on the Cell Viability and Melanogenesis in Cultured Human Skin Melanoma Cells Damaged by ROS-Induced Cytotoxicity

  • Ha, Dae-Ho;Choi, Yong-Ja;Yoo, Sun-Mi
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.349-354
    • /
    • 2007
  • The purpose of this study was to examine the effect of vanillic acid on the cell viability and melanogenesis in melanocytes damaged by reactive oxygen species (ROS). The human skin melanoma cells (SK-MEL-3) were cultured with various concentrations of hydrogen peroxide $(H_2O_2)$. The cell viability for $H_2O_2$-induced cytotoxicity or vanillic acid against $H_2O_2$ was measured by XTT assay in these cultures. For the effect of vanillic acid on the melanogenesis, the tyrosinase inhibitory activity was measured by colorimetric assay at a wavelength of 490 nm, and melanin synthesis activity were assessed after cells were cultured in the media with or without various cencentrations of vanillic acid. In this study, $H_2O_2$ decreased cell viability dose- and time-dependent manners and $XTT_{50}$ was determined at a concentration of 80 ${\mu}M$, $H_2O_2$. Vanillic acid increased the cell viability dose dependently in human skin melanoma cells damaged by $H_2O_2$-induced cytotoxicity. In the tyrosinase inhibitory activity, vanillic acid supresssed tyrosinase activity in dosedependent manner, and also decreased significantly melanin synthesis activity compared with $H_2O_2$-treated group. From these results. It is suggested that $H_2O_2$-mediated cytotoxicity was highly by the toxic criteria of Borenfreund and Puerner and also, vanillic acid has the protective effect on ROS-induced cytotoxicity and melanogenesis in these cultures.

  • PDF

$\beta$-Alanine Induced Down-Regulation of the Taurine Transporter Activity in the Human Colon Carcinoma Cell Line (HT-29) (인체 소장상피세포주 모델(HT-29)에서 $\beta$-알라닌이 타우린수송체 활성에 미치는 영향)

  • 박태선;윤미영;정한나;이해미
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.2
    • /
    • pp.314-319
    • /
    • 2001
  • In the present study, effects of $\beta$-alanine, a known taurine antagonist for its structural similarity, on the adaptive regulation and kinetic behavior of the taurine transporter were investigated in the HT-29, human colon carcinoma cell line. Pretreatment of the cell with $\beta$-alanine(10mM) for varying periods from 3 to 30 hrs significantly reduced the taurine uptake compared to the value for control cells. This decrease in the taurine transporter activity was dependent on the incubation time with $\beta$-alanine, and the maximal down-regulation of the transporter activity was observed in cells pretreated with $\beta$-alanine for 24 hrs (25% of the control value, p<0.01). The taurine transporter appears to bind exclusively with $\beta$-alanine in the HT-29 cells since the same concentration of $\alpha$-alanine added in the culture medium for 24 hrs did not influence the taurine uptake. Kinetic analyses of the taurine transporter activity was performed in the HT-29 cell line with varying taurine concentration (5~60$\mu$M) in the uptake medium. Active taurine uptake was significantly lower in $\beta$-alanine pretreated cells compared to the value for control cells in the range of taurine concentration used in the experiment (p<0.001). The cells pretreated with $\beta$-alanine showed a 50% lower maximal velocity (Vmax, 1.7$\pm$2.0 nmole.mg $protein^{-1}$.$30min^{-1}$), and a 99% higher Michaelis constant (Km, 40.3$\pm$7.6$\mu$M) than the control values (3.3$\pm$1.9 nmole.mg $protein^{-1}$.$30min^{-1}$, and 20.3$\pm$2.1$\mu$M, respectively). These results on kinetic data suggest that $\beta$-alanine induced down-regulation of the taurine transporter activity was associated with decreases in both maximal velocity and affinity of the transporter.

  • PDF

Inhibition of Telomerase Activity in U937 Human Monocytic Leukemia Cells by Compound K, a Ginseng Saponin Metabolite

  • Kang Kyoung-Ah;Lee Kyoung-Hwa;Chae Sung-Wook;Kim Jeong-Ki;Seo Jung-Yeon;Ham Yong-Ho;Lee Kee-Ho;Kim Bum-Joon;Kim Hee-Sun;Kim Dong-Hyun;Hyun Jin Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • Telomerase activation is detected in most cancerous cells; hence, telomerase is a highly selective target for cancer therapy, which plays an important role in the apoptotic process. We have previously reported that the ginseng saponin metabolite, Compound K (20-O-D-glucopyranosyl-20(S)-protopanaxadiol, IH901), inhibits cell proliferation by inducing apoptosis and cell cycle arrest at the $G_1$ phase. The present study investigated the regulation of telomerase activity in Compound K treated U937 cells. Compound K treatment caused a reduction in telomerase activity and down-regulated the human telomerase reverse transcriptase (hTERT) gene, resulting in the decreased expressions of its protein, and of the c-Myc and Spl proteins (transcription factors of hTERT). These results indicate that the anticancer activity of Compound K could be mediated by inhibition of the telomerase activity.

Effects of Daidzein on benzo(k)fluoranthene Regulated CYP1A1 Gene Expression in MCF-7 Human Breast Cancer Cells (Daidzein이 benzo(k)fluoranthene에 의한 사람 유방암 세포 MCF-7의 CYP1A1 유전자 발현 조절에 미치는 영향)

  • Yang, So-Yeon;Sheen, Yhun-Yhong
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.4
    • /
    • pp.180-188
    • /
    • 2004
  • CYP1A1 is known to be inducible by xenobiotic compouds such as polyciclic aromatic hydrocarbons(PAHs) and 2,3,7,8-tetrachloro-dibenzo-p-dioxin(TCDD). These chemicals have been identified worldwide and can have a significant impact on the human health and well being of human and wildlife. Given these issues, the detection and quantification of these chemicals in biological, environmental and food samples is important. We investigated the effect of dietaty flavonoid, such as CYP1A1 promoter activity, 7-ethoxyresorufin-O-deethylase(EROD) activity and CYP1A1 mRNA expression induced by benzo(k)fluoranthene(B(k)F) in MCF-7 cells. Based on the three criteria of frequency of occurrence in the environment, toxicity and potential exposure to humans, B(k)F is one of the top-listed PAHs. We found that B(k)F significantly up-regulates the level of CYP1A1 promoter activity, EROD and CYP1A1 mRNA. when cells were treated with daidzein inhibited the B(k)-induced CYP1A1 prompter activity and mRNA level at high concentration. But daidzein exhibited stimulatory effects B(k)F-induced CYP1A1 promoter activity and mRNA level at low concentration. Overall, results from these studies demonstrate flavonoids might interfere the action of B(k) with AhR system to stimulate CYP1A1 gene expression.

  • PDF

Effects of Morin on benzo(k)fluoranthene Regulated CYP1A1 Gene Expression in MCF-7 Human Breast Cancer Cells (Morin이 benzo(k)fluoranthene에 의한 유방암 세포 MCF-7의 CYP1A1 유전자 발현 조절에 미치는 영향)

  • Yang, So-Yeon;Kim, Yeo-Woon;Sheen, Yhun-Yhong
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.4
    • /
    • pp.189-197
    • /
    • 2004
  • We investigated the effect of dietaty flavonoid, such as CYP1A1 promoter activity, 7-ethoxyresorufin-O-deethylase(EROD) activity and CYP1A1 mRNA expression induced by benzo(k)fluoranthene(B(k)F) in MCF-7 cells. Based on the three criteria of frequency of occurrence in the environment, toxicity and potential exposure to humans, B(k)F is one of the top-listed PAHs. We found that B(k)F significantly up-regulates the level of CYP1A1 promoter activity, EROD and CYP1A1 mRNA. When cells were treated with morin alonem, it was not changed that EROD and CYP1A1 mRNA, compared to that of control. However, morin inhibited the B(k)-induced CYP1A1 prompter activity and mRNA level at high concentration. But morin exhibited stimulatory effects B(k)F-induced CYP1A1 promoter activity and mRNA level at low concentration. Overall, results from these studies demonstrate morin might interfere the action of B(k) with AhR system to stimulate CYP1A1 gene expression. CYP1A1 is known to be inducible by xenobiotic compouds such as polyciclic aromatic hydrocarbons(PAHs) and 2,3,7,8-tetrachloro-dibenzo-p-dioxin(TCDD). These chemicals have been identified worldwide and can have a significant impact on the human health and well being of human and wildlife. Given these issues, the detection and quantification of these chemicals in biological, environmental and food samples is important.

  • PDF

Effects of Chitosan on Human Gingival Fibroblasts in Vitro (키토산이 치은섬유아세포에 미치는 영향)

  • Kim, Ok-Su;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.1
    • /
    • pp.235-247
    • /
    • 2002
  • The aim of this study was to evaluate the effects of chitosan coating on the attachment, proliferation, functional and morphological change of human gingival fibroblasts. Primary culture of human gingival fibroblasts were grown in Dulbecco's modified Eagle's medium with 10% fetal bovine serum and 1% antibiotics. In experimental group, cells were inoculated in the multiwell plates coated with chitosan in concentration of 0.02, 0.2, and 2 mg/ml. Cell counting and MTT assay were done after 0.5, 1.5, 3, 6 and 24 hours of incubation to evaluate the cell attachment, and then after 2 and 7 days of culture to evaluate the cell proliferation. The alkaline phosphatase activity was measured after 4 and 7 days of culture and the ability to produce mineralized nodules was evaluated after 21 days of culture. The results were as follows : The morphology of cells on the chitosan-coated well was round or spheric. Round cells were aggregated since 6 hours of culture and showed nodule-like appearance after 24 hours of culture and did not achieved confluency at 7 days. The attachment of gingival fibroblasts was inhibited by chitosan coating with a tendency of dose dependent pattern. But, cellular activity of unit cell was higher than control. The proliferation of gingival fibroblasts was inhibited by chitosan coating at 2 mg/ml(P<0.01), while the cell proliferation at 0.02, 0.2 $mg/m{\ell}$ was comparable to the control well. Total alkaline phosphatase activity was inhibited by chitosan coating and decreased in the course of time. While ALP activity of unit cell was the highest at 2mg/ml after 4 days of culture. Finally, gingival fibroblasts produced the mineralized nodule at 2 mg/ml. In summary, the attachment, proliferation, and alkaline phosphatase activity of gingival fibroblasts were influenced differently by the concentration of coated chitosan. From this study, it could be used as the matrix of tissue engineering for gingiva without inhibition on proliferation of gingival fibroblasts using chitosan at the optimal concentration (0.02mg/ml).

Purification and biological activity of recombinant human bone morphogenetic protein-2 produced by E. coli expression system (E. coli 발현 시스템에 의해 생산된 recombinant human bone morphogenetic protein-2의 정제와 생물학적 활성)

  • Choi, Kyung-Hee;Moon, Keumok;Kim, Soo-Hong;Yun, Jeong-Ho;Jang, Kyung-Lib;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.1
    • /
    • pp.41-50
    • /
    • 2008
  • Purpose: Bone morphogenetic protein-2(BMP-2) has been shown to possess significant osteoinducitve potential. There have been attempts to overcome a limitation of mass production, and economical efficiency of BMP. The aim of this study was to produce recombinant human BMP-2(rhBMP-2) from E. coli in a large scale and evaluate its biological activity. Materials and Methods: The E.coli strain BL21(DE3) was used as a host for rhBMP-2 production. Dimerized rhBMP-2 was purified by affinity chromatography using Heparin column. To determine the physicochemical properties of the rhBMP-2 expressed in E. coli, we examined the HPLC profile and performed Western blot analysis. The effect of the purified rhBMP-2 dimer on osteoblast differentiation was examined by alkaline phosphatase (ALP) activity and representing morphological change using C2C12 cell. Results: E. coli was genetically engineered to produce rhBMP-2 in a non-active aggregated form. We have established a method which involves refolding and purifying a folded rhBMP-2 dimer from non-active aggregates. The purified rhBMP-2 homodimer was characterized by SDS-PAGE as molecular weight of about 28kDa and eluted at 34% acetonitrile, 13.27 min(retention time) in the HPLC profile and detected at Western blot. The purified rhBMP-2 dimer stimulated ALP activity and induced the transformation from myogenic differentiation to osteogenic differentiation. Conclusion: rhBMP-2 was produced in E. coli using genetic engineering. The purified rhBMP-2 dimer stimulated ALP activity and induced the osteogenic differentiation of C2C12 cells.

Screening of Stat3 inhibitory effects of Korean herbal medicines in the A549 human lung cancer cell line

  • Park, Jong-Shik;Bang, Ok-Sun;Kim, Jinhee
    • Integrative Medicine Research
    • /
    • v.3 no.2
    • /
    • pp.67-73
    • /
    • 2014
  • Background: The transcription factor signal transducer and activator of transcription 3 (Stat3)is constitutively activated in many human cancers. It promotes tumor cell proliferation,inhibits apoptosis, induces angiogenesis and metastasis, and suppresses antitumor hostimmune responses. Therefore, Stat3 has emerged as a promising molecular target for cancertherapies. In this study, we evaluated the Stat3-suppressive activity of 38 herbal medicinestraditionally used in Korea.Methods: Medicinal herb extracts in 70% ethanol were screened for their ability to suppressStat3 in the A549 human lung cancer cell line. A Stat3-responsive reporter assay system wasused to detect intracellular Stat3 activity in extract-treated cells, and Western blot analyseswere performed to measure the expression profiles of Stat3-regulated proteins.Results: Fifty percent of the 38 extracts possessed at least mild Stat3-suppressive activities(i.e., activity less than 75% of the vehicle control). Ethanol extracts of Bupleurum falcatumL., Taraxacum officinale Weber, Solanum nigrum L., Ulmus macrocarpa Hance, Euonymus alatusSieb., Artemisia capillaris Thunb., and Saururus chinensis (Lour.) Baill inhibited up to 75% of thevehicle control Stat3 activity level. A549 cells treated with these extracts also had reducedBcl-xL, Survivin, c-Myc, and Mcl-1 expression.Conclusion: Many medicinal herbs traditionally used in Korea contain Stat3 activity-suppressing substances. Because of the therapeutic impact of Stat3 inhibition, these resultscould be useful when developing novel cancer therapeutics from medicinal herbs.